

TEST REPORT IEC 61683

Photovoltaic systems – Power conditioners – Procedure for measuring efficiency

Report Number. GZES230100085502

Date of issue 2023-01-12

Total number of pages 49

Name of Testing Laboratory Guangzhou SGS-CSTE Standards Technical Services Co., Ltd.

preparing the Report...... Guangzhou Branch

Development Area, Guangzhou, Guangdong, China

中工中层空卧

Applicant's name...... AISWEI Technology Co., Ltd.

Shanghai, China

Test specification:

Standard.....: IEC 61683:1999 (First Edition)

Test procedure SGS-CSTC

Non-standard test method.....: N/A

Test Report Form No.....: IEC 61683B

Test Report Form(s) Originator.....: TÜV SÜD Product Service GmbH

Master TRF...... Dated 2017-11

Copyright © 2014 IEC System of Conformity Assessment Schemes for Electrotechnical Equipment and Components (IECEE System). All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the IECEE is acknowledged as copyright owner and source of the material. IECEE takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

This report is not valid as a CB Test Report unless signed by an approved CB Testing Laboratory and appended to a CB Test Certificate issued by an NCB in accordance with IECEE 02.

General disclaimer:

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the Issuing CB Testing Laboratory. The authenticity of this Test Report and its contents can be verified by contacting the NCB, responsible for this Test Report.

Page 2 of 38

Test item description:	Grid-connected PV Inverter
Trade Mark:	♦ Solplanet
Manufacturer:	AISWEI Technology Co., Ltd.
Address:	Room 905B, 757 Mengzi Road, Huangpu District, 200023 Shanghai, China
Model/Type reference:	ASW75K-LT, ASW80K-LT, ASW100K-LT, ASW110K-LT
Ratings:	Refer to the rating on page 6 of the report
	Serial Number: AQ011060322B0116 (The Equipment parameters were changed by software)
	Master Local version: V610-04001-02
	Safety Local version: V610-12001-00

	1000 0070 01 1 1 7 1	
Testing Laboratory:	SGS-CSTC Standards Tech Guangzhou Branch	nical Services Co., Ltd.
Location/address	198 Kezhu Road, Science C Development Area, Guangz	
Tested by (name, function, signature):	Hugo Zhang (Project Engineer)	1dugo Zhang
Approved by (name, function, signature:	Roger Hu (Technical Reviewer)	Regula

List of Attachments (including a total number of pages in each attachment):

50/60 Hz							
Attachment # Description Pages							
Attachment I	Pictures of the EUT and Electrical Schemes	6 pages					
Attachment II	Testing Information	5 pages					

Page 3 of 38

Summary of testing:

Tests performed (name of test and test clause):

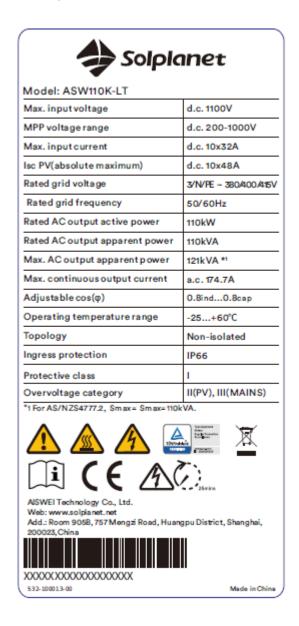
The equipment has been tested according to the standard:

IEC 61683:1999. Testing has been carried out at 50/60 Hz.

All applicable tests according to the above specified standard have been carried out.

From the result of inspection and tests on the submitted sample, we conclude that it complies with the requirements of the standard.

Note1: Output voltage is 230Va.c..


Testing location: See page 2

Summary of compliance with National Differences

No National Differences are addressed to this test report

Copy of marking plate(representative):

Note:

- The above markings are the minimum requirements required by the safety standard. For the final
 production samples, the additional markings which do not give rise to misunderstanding may be
 added.
- 2. Label is attached on the side surface of enclosure and visible after installation
- 3. Labels of other models are as the same with ASW110K-LT's except for the parameters of rating.
- 4. As declared by the applicant, the importer (and manufacturer, if it is different)'s name, registered trade name or registered trademark and the postal address will be marked on the products before being place on the market. The contact details shall be in a language easily understood by end-users and market surveillance authorities.

Page 5 of 38

Test item particulars	Three Phase PV Grid-connected Inverter
Classification of installation and use	Fixed (permanent connection)
Supply Connection	DC; PV
	AC; Grid connection
Possible test case verdicts:	
- test case does not apply to the test object:	N/A
- test object does meet the requirement:	P (Pass)
- test object does not meet the requirement:	F (Fail)
Testing:	
Date of receipt of test item:	N/A
Date (s) of performance of tests:	From 2022-12-12 to 2023-01-05
General remarks:	
"(See Enclosure #)" refers to additional information ap "(See appended table)" refers to a table appended to the	·
This document is issued by the Company subject to its General Co accessible at www.sgs.com/terms and conditions.htm and, for ele Electronic Documents at	

Page 6 of 38

General product information:

The product is a transformerless PV inverter with MPP trackers, which converts the direct current of the PV modules into grid-compliant alternating current and feeds it into the utility grid.

Equipment Under Testing:

- ASW75K-LT
- ASW80K-LT
- ASW100K-LT
- ASW110K-LT

Product Model	ASW75K-LT	ASW80K-LT	ASW100K-LT	ASW110K-LT	
	Input	(DC)			
Maximum input voltage (V)		11	100		
MPP voltage range (V)		200 ~	- 1000		
MPP voltage range with full		460	~ 850		
power (V)		400	050		
Initial input voltage(V)		2	50		
Min. input voltage (V)		2	00		
Rated input voltage (V)		6	30		
Max. input current (A)	8*32 10*32				
Max. short circuit current (A)	t (A) 8*48 10*48				
	Output	(AC)			
Rated active power (W)	75000	80000	100000	110000	
Max. apparent power (VA)	75000	88000	110000	121000	
Rated Output Current (A)	108.7	116.0	145.0	159.5	
Max. Output Current (A)	114	127	158.8	174.7	
Nominal Grid Voltage (V)		230 V / 400	0 V [3/N/PE]		
Nominal Frequency (Hz)		50)/60		
Power factor		0.8 inductive	0.8 capacitive		
Topology		Non-i	solated		
Operating temperature range		-25 °C ∕	~ +60 °C		
Degree of protection		IF	² 66		

Page 7 of 38

	IEC 61683: 1999						
Clause	Requirement – Test	Measuring result – Remark	Verdict				
4	Efficiency measurement conditions						
	Efficiency is measured under the conditions in the following clauses.		Р				
	Specific conditions may be excluded by mutual agreement when those conditions are outside the manufacturer's allowable operating range.		P				
4.1	DC power source for testing		Р				
	For power conditioners operating with fixed input voltage, the d.c. power source is a storage battery or constant voltage power source to maintain the input voltage.		N/A				
	For power conditioners that employ maximum power point tracking (MPPT) and shunt-type power conditioners, either a photovoltaic array or a photovoltaic array simulator is utilized.		P				
4.2	Temperature		Р				
	All measurements are to be made at an ambient temperature of 25 °C ± 2 °C.		N/A				
	Other ambient temperatures may be allowed by mutual agreement. However, the temperature used must be clearly stated in all documentation.	By mutual agreement all measurements at 50 Hz/60 Hz have been carried out at 25°C±5°C	Р				
4.3	Output voltage and frequency		Р				
	The output voltage and frequency are maintained at the manufacturer's stated nominal values.	230 V,50 Hz/60 Hz	Р				
4.4	Input voltage		Р				
	Measurements performed in each of the following tests are repeated at three power conditioner input voltages: a) manufacturer's minimum rated input voltage; b) the inverter's nominal voltage or the average of its rated input range; c) 90 % of the inverter's maximum input voltage.		P				
	In the case where a power conditioner is to be connected with a battery at its input terminals, only the nominal or rated input voltage may be applied.		N/A				

Page 8 of 38

	IEC 61683: 1999		
Clause	Requirement – Test	Measuring result – Remark	Verdict

4.5	Ripple and distortion	P
	Record input voltage and current ripple for each measurement. Also record output voltage and current distortion (if a.c.) or ripple (if d.c.). Ensure that these measurements remain within the manufacturer's specified values.	P
4.6	Resistive loads/utility grid	P
	At unity power factor, or at the intrinsic power factor of grid-connected inverters without power factor adjustment, measure the efficiency for power levels of 10 %, 25 %, 50 %, 75 %, 100 % and 120 % of the inverter's rating.	P
	Stand-alone inverters are also measured at a power level of 5 % of rated. The power conditioner test is conducted with a specified resistive and reactive grid impedance.	N/A
4.7	Reactive loads	N/A
	For stand-alone inverters, measure the efficiency with a load which provides a power factor equal to the manufacturer's specified minimum level (or 0,25, whichever is greater) and at power levels of 25 %, 50 % and 100 % of rated VA.	N/A
	Repeat for power factors of 0,5 and 0,75 (do not go below the manufacturer's specified minimum PF) and power levels of 25 %, 50 %, and 100 % of rated VA.	N/A
4.8	Resistive plus non-linear loads	N/A
	For stand-alone inverters, measure the efficiency with a fixed non-linear load (total harmonic distortion (THD) = (80 ± 5) %) equal to (25 ± 5) % of the inverter's rated VA plus sufficient resistive load in parallel to achieve a total load of 25 %, 50 % and 100 % of rated VA.	N/A
	Repeat the measurements with a fixed non-linear load equivalent to (50 ± 5) % of the inverter's rated VA plus sufficient resistive load in parallel to achieve a total load of 50% and 100% of rated VA.	N/A
	The type of non-linear load must be clearly stated in all documentation.	N/A

Page 9 of 38

	IEC 61683: 1999						
Clause	Requirement – Test	Measuring result – Remark	Verdict				
4.9	Complex loads		N/A				
	When a non-linear plus a sufficient reactive load condition is specified for stand-alone inverters, measure the efficiency with a fixed non-linear load (THD = (80 ± 5) %) equal to (50 ± 5) % of the inverter's rated VA plus a sufficient reactive load (PF = 0,5) in parallel to achieve a total load of 50 % and 100 % of rated VA.		N/A				
	The type of complex load is clearly stated in all documentation.		N/A				
5	Efficiency calculations		Р				
5.1	Rated output efficiency		Р				
5.2	Partial output efficiency		P				
5.3	Energy efficiency		P				
5.4	Efficiency tolerances		P				
3.4	Efficiency tolerances		Γ				
6	Conditions of loading for output ports		Р				
6.1	Test circuit		Р				
	Figure 1a is applied to stand-alone power conditioners		N/A				
	PS V ₁ PC under V ₂ A ₂ PF* L Figure 1a – Stand-alone type		N/A				
	Figure 1b is applied to utility-interactive power conditioners		Р				
	PS V ₁ V ₁ V ₂ V ₂ PF V ₁ Utility grid grid grid lest V ₂ V ₂ V ₃ PF V ₁₅₆₇ V	759	P				
	PC power conditioner L load PS variable voltage-current d.c. power supply F frequency meter A1 DC ammeter V1 DC voltmeter A2 AC or d.c. ammeter V2 AC or d.c. voltmeter W1 DC wattmeter PF power factor meter W2 AC or d.c. wattmeter						

Page 10 of 38

	IEC 61683: 1999						
Clause	Requirement – Test	Measuring result – Remark	Verdict				
		·					
6.2	Measurement procedure		Р				
0.2	Wicasurement procedure		<u> </u>				
7	Loss measurement		Р				
7.1	No-load loss		Р				
7.2	Standby loss		Р				
Annex A	Power conditioner description		Р				
Annex B	Power efficiency and conversion factor		Р				
Annex C	Weighted-average energy efficiency		Р				
Annex D	Derivation of efficiency tolerance in table 2		Р				

Page 11 of 38

Report No. GZES230100085502

TABLE E	fficiency red	cording	ording and efficient calculation sheet for 50 Hz							
power conditions	er type	Grid-connected								
Model:		ASW7	75K-LT							
Parameters of p	ower	Minim	um rated	input vol	tage: 200	V				
conditioner		Nomir	nal voltag	e: 630 V						
		Maxin	num inpu	t voltage:	1100 V					
		MPPT	voltage	range: 20	00 ~ 1000	V				
		MPPT	voltage	range wit	th full pow	er: 460 ~ 8	850 V			
			•	oltage: 23						
			•	equency						
				ower: 750						
		90% c	of the inve inge, the	erter's ma inverter o	aximum inį can't outpu	al, the mining out voltage at full powe used inste	e is 90%*1 er. So, for t	100 V=990 his test, 40	V. Howe	ever, in
PV input voltage)	a)	Manuf	acturer's	minimum	rated inpu	t voltage 4	60 V (±6.9	90 V)	
Temperature (°C	C)					25 °C ± 5	°C			
Operating period energy measure (min)		5								
Percentage of ra	ated	1	10%	25%	50%	75%	100%	120%(*)	1	/
Input voltage (V))	/	454.0	464.4	453.4	459.3	458.3	/	/	1
Input voltage rip	ple (V)	/	1.2	1.0	1.2	1.0	1.0	/	1	1
Input current (A))	/	17.6	40.8	85.4	126.0	172.1	/	1	1
Input current ripp	ple (A)	/	2.0	2.0	2.0	2.0	2.0	/	1	1
Input power (Pi)	(kW)	/	8.001	18.933	38.732	57.865	78.886	/	1	1
Output power (P	o) (kW)	/	7.523	18.233	37.670	56.505	77.158	/	1	1
Output efficiency	y (%)	/	94.0	96.3	97.3	97.6	97.8	1	1	1
Input energy (W	i) (Wh)	/	668	1581	3236	4844	6588	1	1	1
Output energy (\	Wo) (Wh)	/	628	1522	3147	4730	6444	1	1	1
Energy efficiency	y(%)	/	94.0	96.3	97.2	97.6	97.8	/	1	1

^(*) If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived.

Page 12 of 38

Report No. GZES230100085502

PV input voltage	b)	b) The inverter's nominal voltage 630 V (±9.45 V)							
Temperature (°C)		25 °C ± 5 °C							
Operating period for energy measurement (min)		5							
Percentage of rated output VA	1	10%	25%	50%	75%	100%	120%(*)	1	1
Input voltage (V)	/	630.6	630.6	633.1	627.8	626.1	/	1	1
Input voltage ripple (V)	1	1.2	1.2	1.5	1.2	1.3	/	1	1
Input current (A)	/	12.9	30.1	59.7	90.7	120.9	/	1	1
Input current ripple (A)	/	2.0	2.0	4.7	2.0	2.0	/	1	1
Input power (Pi) (kW)	/	8.162	18.982	37.763	56.920	75.710	/	1	/
Output power (Po) (kW)	/	7.727	18.564	37.196	56.220	74.801	/	1	/
Output efficiency (%)	/	94.7	97.8	98.5	98.8	98.8	/	1	/
Input energy (Wi) (Wh)	/	681	1585	3155	4760	6321	/	1	1
Output energy (Wo) (Wh)	/	645	1550	3108	4702	6246	/	1	1
Energy efficiency(%)	/	94.7	97.8	98.5	98.8	98.8	1	1	/

^(*) If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived.

Page 13 of 38

Report No. GZES230100085502

PV input voltage	c)	c) 90% of the inverter's maximum input voltage 850 V (± 12.75 V)											
Temperature (°C)					25 °C ± 5 °	°C							
Operating period for energy measurement (min)		5											
Percentage of rated output VA	1	10%	25%	50%	75%	100%	120%(*)	1	1				
Input voltage (V)	1	851.0	845.6	847.4	848.5	847.6	/	1	1				
Input voltage ripple (V)		1.2	1.7	1.2	1.3	1.2	/	1	1				
Input current (A)	1	9.6	22.4	45.4	68.1	90.9	/	1	1				
Input current ripple (A)		1.7	3.0	2.3	2.0	2.0	/	1	1				
Input power (Pi) (kW)	1	8.165	18.903	38.454	57.752	77.019	/	1	1				
Output power (Po) (kW)	1	7.564	18.247	37.558	56.573	75.510	/	1	1				
Output efficiency(%)	1	92.6	96.5	97.7	98.0	98.0	/	1	1				
Input energy (Wi) (Wh)	1	682	1580	3214	4828	6435	/	1	1				
Output energy (Wo) (Wh)	1	632	1525	3139	4730	6309	/	1	1				
Energy efficiency(%)	/	92.7	96.5	97.7	98.0	98.0	1	1	1				

^(*) If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived.

TABLE	Efficiency re	ecording	and effic	ient calcu	lation shee	et for 50 Hz	Z					
power condition	ner type	Grid-co	nnected									
Model:		ASW80	K-LT									
Parameters of	f power	Minimu	m rated i	nput volta	ge:200 V							
conditioner		Nomina	l voltage	: 630 V								
		Maximu	ım input v	voltage: 1	100 V							
		MPPT \	oltage ra	ange: 200	~ 1000 V							
		MPPT \	oltage ra	ange with	full power	: 460 ~ 85	0 V					
		Rated c	utput vol	tage: 230	V							
			Rated output frequency: 50 Hz									
			Rated output power: 80000 W Note: According to the user manual, the minimum rated input voltage is 200 V, and									
		90% of this ran	the inver ge, the in	ter's max verter ca	imum inpu n't output t	t voltage is full power.	um rated ir s 90%*110 So, for thi d of 990 V	00 V=990 s test, 460	۷. Howe	er, in		
PV input volta	ge	a)	Manufa	cturer's m	ninimum ra	ted input v	oltage 46	0 V (±6.90) V)			
Temperature	(°C)				2	25 °C ± 5 °	С					
Operating per energy measu (min)						5						
Percentage of output VA	rated	1	10%	25%	50%	75%	100%	120%(*)	1	1		
Input voltage	(V)	1	461.4	462.6	460.0	459.3	458.2	/	1	1		
Input voltage	ripple (V)	1	1.2	1.2	1.2	1.2	1.2	/	1	1		
Input current ((A)	1	18.4	47.1	89.8	135.2	183.0	/	1	1		
Input current r	ripple (A)	1	2.0	2.0	2.0	2.3	2.3	/	1	1		
Input power (F	Pi) (kW)	1	8.497	21.788	41.316	62.107	83.826	/	1	1		
Output power	(Po) (kW)	1	8.029	21.045	40.287	60.716	81.982	/	1	1		
Output efficier	ncy(%)	/	94.5	96.6	97.5	97.8	97.8	1	1	1		
Input energy (Wi) (Wh)	/	710	1827	3458	5192	7025	1	1	1		
Output energy	/ (Wo) (Wh)	1	671	1765	3372	5076	6870	/	1	/		

Page 14 of 38

Remark:

Energy efficiency(%)

97.5

97.8

97.8

96.6

94.5

^(*) If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived.

Page 15 of 38

Report No. GZES230100085502

PV input voltage	b)	The inv	erter's no	minal volta	age 630 V	(±9.45 V)	ı					
Temperature (°C)				2	25 °C ± 5 °	С						
Operating period for energy measurement (min)		5										
Percentage of rated output VA	/	10%	25%	50%	75%	100%	120%(*)	1	1			
Input voltage (V)	1	631.8	634.2	627.4	627.7	627.7	/	1	/			
Input voltage ripple (V)	1	1.2	1.5	1.0	1.3	1.3	/	1	/			
Input current (A)	1	12.6	31.9	63.1	94.5	125.6	/	1	/			
Input current ripple (A)	1	2.0	2.0	2.3	1.7	2.0	/	1	/			
Input power (Pi) (kW)	1	7.981	20.220	39.609	59.318	78.870	/	1	/			
Output power (Po) (kW)	1	7.608	19.753	39.074	58.553	77.931	/	1	/			
Output efficiency(%)	/	95.3	97.7	98.7	98.7	98.8	/	1	1			
Input energy (Wi) (Wh)	1	666	1687	3309	4958	6586	/	1	1			
Output energy (Wo) (Wh)	1	635	1649	3264	4894	6507	/	1	1			
Energy efficiency(%)	1	95.3	97.7	98.6	98.7	98.8	/	1	1			

^(*) If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived.

Page 16 of 38

Report No. GZES230100085502

PV input voltage	c)	c) 90% of the inverter's maximum input voltage 850 V (± 12.75 V)											
Temperature (°C)					25°C ± 5°C	;							
Operating period for energy measurement (min)		5											
Percentage of rated output VA	/	10%	25%	50%	75%	100%	120%(*)	1	/				
Input voltage (V)	1	848.8	846.1	846.1	847.8	847.9	/	1	1				
Input voltage ripple (V)	1	1.2	1.2	1.5	1.3	1.3	/	1	/				
Input current (A)	1	10.2	25.0	49.6	72.4	96.2	/	1	/				
Input current ripple (A)	1	1.2	1.2	1.5	1.3	1.3	/	1	1				
Input power (Pi) (kW)	1	8.671	21.111	41.963	61.415	81.532	/	1	1				
Output power (Po) (kW)	1	8.033	20.378	40.985	60.162	79.934	/	1	/				
Output efficiency(%)	/	92.6	96.5	97.7	98.0	98.0	/	1	1				
Input energy (Wi) (Wh)	1	724	1766	3506	5131	6810	/	1	1				
Output energy (Wo) (Wh)	1	671	1705	3424	5026	6677	/	1	1				
Energy efficiency(%)	1	92.7	96.5	97.7	98.0	98.0	1	1	1				

^(*) If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived.

TABLE	Efficiency re	cording	and effic	ient calcul	ation shee	t for 50 Hz					
power condition	ner type	Grid-c	onnected								
Model:		ASW1	00K-LT								
Parameters of conditioner	^f power	Nomir Maxim MPPT MPPT Rated Rated Rated Note: 90% c this ra	nal voltage of voltage output froutput froutput froutput put According of the invenge, the	e: 630 V voltage: 1 range: 200 range with oltage: 230 equency: 9 ower: 1000 g to the use erter's max inverter ca	0 ~ 1000 V full power 0 V 50 Hz 000 W er manual, kimum inpu in't output	the minim tvoltage i	um rated in s 90%*110. So, for this d of 990 V	00 V=990 is test, 46	V. Howe	ever, in	
PV input volta	ge		a) Manufacturer's minimum rated input voltage 460 V (±6.90 V)								
Temperature ((°C)	25 °C ± 5 °C									
Operating per energy measu (min)			5								
Percentage of output VA	rated	/	10%	25%	50%	75%	100%	120%(*)	1	1	
Input voltage ((V)	/	463.3	463.4	457.5	457.9	458.0	/	1	1	
Input voltage i	ripple (V)	/	1.2	2.2	1.2	1.3	1.2	/	1	1	
Input current (A)	/	23.8	57.4	112.1	167.5	223.6	/	1	1	
Input current r	ipple (A)	1	2.0	2.3	1.7	2.0	2.0	/	1	1	
Input power (F	Pi) (kW)	1	11.031	26.591	51.292	76.684	102.432	1	1	1	
Output power	(Po) (kW)	1	10.474	25.772	50.102	75.020	100.168	/	1	1	
Output efficier	ncy(%)	/	95.0	96.9	97.7	97.8	97.8	1	1	1	
Input energy (Wi) (Wh)	/	922	2221	4291	6413	8567	1	/	/	
Output energy	' (Wo) (Wh)	/	875	2152	4192	6273	8377	1	1	/	
Energy efficier	ncy(%)	1	94.9	96.9	97.7	97.8	97.8	1	1	1	
Remark:											

Page 17 of 38

Remark:

Page 18 of 38

Report No. GZES230100085502

PV input voltage	b)	The inv	erter's no	minal volta	age 630 V	(±9.45 V)							
Temperature (°C)				2	25 °C ± 5 °C	С							
Operating period for energy measurement (min)		5											
Percentage of rated output VA	1	10%	25%	50%	75%	100%	120%(*)	/	1				
Input voltage (V)	1	628.4	626.4	624.8	625.7	626.8	/	1	1				
Input voltage ripple (V)	1	1.2	1.8	1.3	1.0	1.2	/	1	1				
Input current (A)	1	15.9	36.4	79.0	108.1	156.9	/	1	1				
Input current ripple (A)	1	2.0	1.7	2.3	2.0	2.0	/	1	1				
Input power (Pi) (kW)	1	9.967	22.813	49.386	67.663	98.321	/	1	1				
Output power (Po) (kW)	1	9.566	22.341	48.778	66.845	97.092	/	1	1				
Output efficiency(%)	1	96.0	97.9	98.8	98.8	98.8	/	1	1				
Input energy (Wi) (Wh)	1	833	1905	4128	5654	8213	/	1	1				
Output energy (Wo) (Wh)	1	799	1866	4077	5585	8110	/	1	1				
Energy efficiency(%)	1	95.9	98.0	98.8	98.8	98.7	/	1	1				

Remark:

Page 19 of 38

Report No. GZES230100085502

PV input voltage	c)	90% of t	he inverte	r's maximu	ım input vo	oltage 850	V (± 12.7	5 V)					
Temperature (°C)				2	5°C ± 5°C								
Operating period for energy measurement (min)		5											
Percentage of rated output VA	/	10%	25%	50%	75%	100%	120%(*)	/	/				
Input voltage (V)	1	848.4	849.8	848.7	848.2	847.3	/	1	1				
Input voltage ripple (V)	1	1.3	1.3	1.2	1.5	1.2	/	1	1				
Input current (A)	1	12.6	30.4	60.5	90.3	120.3	/	1	/				
Input current ripple (A)	1	2.0	1.7	1.7	2.0	2.0	/	1	1				
Input power (Pi) (kW)	1	10.657	25.824	51.355	76.558	101.903	/	1	1				
Output power (Po) (kW)	1	10.009	25.026	50.235	75.035	99.896	/	1	/				
Output efficiency(%)	1	93.9	96.9	97.8	98.0	98.0	/	1	1				
Input energy (Wi) (Wh)	1	893	2157	4291	6393	8508	/	1	/				
Output energy (Wo) (Wh)	1	839	2091	4198	6266	8341	1	1	1				
Energy efficiency(%)	1	94.0	96.9	97.8	98.0	98.0	1	1	1				

Remark:

TABLE Effici	ency rec	ording a	and efficie	ent calcula	ation shee	et for 50 H	z						
power conditioner ty	pe C	Grid-con	nected										
Model:	A	ASW110)K-LT										
Parameters of power	er N	Minimun	n rated in	put volta	ge:200 V								
conditioner	N	Nominal	voltage:	630 V									
	N	Maximuı	m input v	oltage: 1	100 V								
	N	MPPT v	oltage ra	nge: 200	~ 1000 V								
	N	MPPT v	MPPT voltage range with full power: 460 ~ 850 V										
	F	ated output voltage: 230 V											
	F	Rated output frequency: 50 Hz											
	F	Rated output power: 110000 W											
	g tl	Note: According to the user manual, the minimum rated input voltage is 200 V, and 90% of the inverter's maximum input voltage is 90%*1100 V=990 V. However, in this range, the inverter can't output full power. So, for this test, 460 V were used instead of 200 V, and 850 V were used instead of 990 V.											
PV input voltage		a) Manufacturer's minimum rated input voltage 460 V (±6.90 V)											
Temperature (°C)		25 °C ± 5 °C											
Operating period for energy measurement (min)		5											
Percentage of rated output VA		1	10%	25%	50%	75%	100%	120%(*)	1	/			
Input voltage (V)		/	460.1	458.0	458.6	456.9	458.2	1	1	/			
Input voltage ripple	(V)	1	1.2	1.3	1.3	1.2	1.2	1	1	/			
Input current (A)		/	24.8	59.0	120.2	179.7	241.4	/	1	1			
Input current ripple ((A)	/	2.0	1.7	1.7	2.0	2.0	/	1	/			
Input power (Pi) (kW	/)	1	11.406	27.033	55.105	82.103	110.613	1	1	/			
Output power (Po) (kW)	/	10.869	26.224	53.832	80.288	108.091	1	1	/			
Output efficiency(%))	1	95.3	97.0	97.7	97.8	97.7	1	1	1			
Input energy (Wi) (V	Vh)	1	952	2258	4605	6857	9238	1	1	1			
Output energy (Wo)	(Wh)	1	908	2190	4498	6705	9027	1	1	1			
Energy efficiency(% Remark:)	1	95.4	97.0	97.7	97.8	97.7	1	1	1			

Page 20 of 38

^(*) If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived.

Page 21 of 38

Report No. GZES230100085502

PV input voltage	b)	The inve	erter's nor	ninal volta	age 630 '	V (±9.45 \	/)						
Temperature (°C)				2	5 °C ± 5 °	C.							
Operating period for energy measurement (min)		5											
Percentage of rated output VA	1	10%	25%	50%	75%	100%	120%(*)	1	/				
Input voltage (V)	1	630.3	635.7	622.3	628.5	629.3	1	1	1				
Input voltage ripple (V)	1	1.2	1.3	1.2	1.0	1.2	1	1	/				
Input current (A)	1	17.3	43.3	89.8	131.9	177.3	/	1	1				
Input current ripple (A)	1	2.0	2.0	2.0	1.7	1.7	/	1	1				
Input power (Pi) (kW)	1	10.935	27.499	55.856	82.884	111.544	/	1	1				
Output power (Po) (kW)	1	10.534	26.954	55.163	81.882	110.149	/	1	1				
Output efficiency(%)	1	96.3	98.0	98.8	98.8	98.7	/	1	1				
Input energy (Wi) (Wh)	1	920	2297	4663	6944	9311	1	1	1				
Output energy (Wo) (Wh)	1	887	2252	4605	6860	9195	1	1	1				
Energy efficiency(%)	1	96.4	98.0	98.8	98.8	98.8	1	1	1				

^(*) If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived.

Page 22 of 38

Report No. GZES230100085502

PV input voltage	c)	90% of t	he inverte	r's maximu	ım input v	oltage 850	V (± 12.7	75 V)					
Temperature (°C)				2	5°C ± 5°C								
Operating period for energy measurement (min)		5											
Percentage of rated output VA	/	10%	25%	50%	75%	100%	120%(*)	1	1				
Input voltage (V)	1	850.1	847.8	849.2	847.9	846.6	/	1	1				
Input voltage ripple (V)	1	1.2	1.3	1.2	1.0	1.3	/	1	1				
Input current (A)	1	13.9	33.9	66.4	96.5	132.3	/	1	1				
Input current ripple (A)	1	2.0	2.0	2.0	1.7	1.7	/	1	1				
Input power (Pi) (kW)	1	11.828	28.706	56.422	81.786	112.038	/	1	1				
Output power (Po) (kW)	1	11.042	27.730	55.226	80.175	109.808	/	1	1				
Output efficiency(%)	1	93.4	96.6	97.9	98.0	98.0	/	1	1				
Input energy (Wi) (Wh)	1	989	2401	4713	6836	9115	1	1	1				
Output energy (Wo) (Wh)	1	923	2319	4613	6701	8934	/	1	1				
Energy efficiency(%)	1	93.3	96.6	97.9	98.0	98.0	/	1	1				

^(*) If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived.

Page 2	23 ot	38
--------	-------	----

TABLE	Efficiency re	ecording	and effic	ient calcu	lation shee	et for 60 Hz	 Z				
power condition	ner type	Grid-co	nnected								
Model:		ASW75	K-LT								
Parameters of conditioner	power	Mominal Maximu MPPT v MPPT v Rated o Rated o Rated o Note: A 90% of this range	I voltage: Im input voltage randitage randitage randitage randitage randitage randitage randitage randitage randitage randitage. I voltage: I	reface to the use ter's max verter care.	~ 1000 V full power V 60 Hz 00 W er manual, imum inpu n't output t	t voltage is full power.	0 V um rated ir s 90%*110 So, for thi d of 990 V	00 V=990 \ s test, 460	V. Howev	er, in	
PV input voltag	je		a) Manufacturer's minimum rated input voltage 460 V (±6.90 V)								
Temperature (°	°C)	25 °C ± 5 °C									
Operating period energy measur (min)			5								
Percentage of output VA	rated	/	10%	25%	50%	75%	100%	120%(*)	1	1	
Input voltage (\	V)	/	458.9	464.2	456.5	459.1	457.9	/	1	1	
Input voltage ri	pple (V)	1	1.0	1.5	1.3	1.0	1.2	/	1	1	
Input current (A	A)	1	17.4	40.8	84.9	126.0	172.4	/	1	1	
Input current rip	pple (A)	1	1.7	1.7	1.7	1.7	1.7	/	1	1	
Input power (P	i) (kW)	1	8.004	18.941	38.763	57.845	78.963	1	1	1	
Output power ((Po) (kW)	1	7.519	18.222	37.662	56.428	77.155	/	1	1	
Output efficiend	cy(%)	/	93.9	96.2	97.2	97.6	97.7	1	1	1	
Input energy (V	Vi) (Wh)	1	670	1583	3243	4842	6599	1	1	1	
Output energy	(Wo) (Wh)	1	629	1522	3150	4723	6448	1	1	1	
Energy efficien	icy(%)	1	93.9	96.1	97.1	97.5	97.7	1	1	1	

^(*) If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived.

Page 24 of 38

Report No. GZES230100085502

PV input voltage	b)	b) The inverter's nominal voltage 630 V (±9.45 V)										
Temperature (°C)				2	5 °C ± 5 °	C						
Operating period for energy measurement (min)					5							
Percentage of rated output VA	/	10%	25%	50%	75%	100%	120%(*)	1	/			
Input voltage (V)	/	634.1	638.1	630.8	632.0	629.4	/	1	/			
Input voltage ripple (V)	/	1.2	1.3	1.0	1.2	1.2	/	1	/			
Input current (A)	/	12.8	29.4	59.9	90.2	120.4	/	1	/			
Input current ripple (A)	/	2.0	1.7	2.0	1.7	2.3	/	1	/			
Input power (Pi) (kW)	/	8.125	18.782	37.803	57.019	75.787	/	1	/			
Output power (Po) (kW)	/	7.685	18.350	37.198	56.261	74.809	/	1	/			
Output efficiency(%)	/	94.6	97.7	98.4	98.7	98.7	/	1	/			
Input energy (Wi) (Wh)	/	679	1570	3159	4200	6333	/	1	/			
Output energy (Wo) (Wh)	/	642	1533	3108	4144	6251	/	1	/			
Energy efficiency(%)	1	94.6	97.6	98.4	98.7	98.7	/	1	/			

^(*) If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived.

Page 25 of 38

Report No. GZES230100085502

PV input voltage	c)	90% of t	he inverte	er's maxim	ıum input v	oltage 85	0 V (± 12.	75 V)	
Temperature (°C)					25°C ± 5°C				
Operating period for energy measurement (min)					5				
Percentage of rated output VA	/	10%	25%	50%	75%	100%	120%(*)	1	/
Input voltage (V)	1	851.7	846.8	847.7	850.6	847.0	/	1	1
Input voltage ripple (V)	/	1.0	1.0	1.2	1.2	1.2	/	1	1
Input current (A)	/	9.6	22.3	45.3	67.9	91.0	/	1	1
Input current ripple (A)	/	2.0	6.0	2.3	2.0	2.0	/	1	1
Input power (Pi) (kW)	/	8.170	18.922	38.439	57.741	77.043	/	1	1
Output power (Po) (kW)	/	7.562	18.246	37.505	56.505	75.456	/	1	1
Output efficiency(%)	/	92.6	96.4	97.6	97.9	97.9	/	1	1
Input energy (Wi) (Wh)	/	683	1581	3212	4823	6438	/	1	1
Output energy (Wo) (Wh)	1	632	1524	3134	4720	6305	/	1	1
Energy efficiency(%)	1	92.5	96.4	97.6	97.9	97.9	1	1	1

^(*) If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived.

TABLE	Efficiency re	ecording	cording and efficient calculation sheet for 60 Hz									
power condition	ner type	Grid-co	nnected									
Model:		ASW80	K-LT									
Parameters of conditioner	power	Momina Maximu MPPT v MPPT v Rated o Rated o Rated o Note: A 90% of this range	I voltage: Im input voltage randitage randitage randitage randitage randitage randitage randitage randitage randitage randitage. I voltage: I	control of the use ter's maxiverter call	~ 1000 V full power V 60 Hz 0 W er manual, imum inpu n't output f	t voltage is ull power.	O V um rated in s 90%*110 So, for thi d of 990 V	00 V=990 \ s test, 460	V. Howe	ver, in		
PV input volta	ge	a)	· · · · · · · · · · · · · · · · · · ·									
Temperature ((°C)	25 °C ± 5 °C										
Operating peri energy measu (min)			5									
Percentage of output VA	rated	1	10%	25%	50%	75%	100%	120%(*)	1	/		
Input voltage ((V)	1	464.7	458.7	459.3	459.7	458.0	/	1	1		
Input voltage r	ripple (V)	1	1.2	1.2	2.0	1.2	2.0	/	1	/		
Input current (A)	1	18.3	47.5	90.2	135.3	183.2	/	1	/		
Input current r	ipple (A)	1	2.0	2.0	3.3	2.0	4.3	/	1	/		
Input power (F	Pi) (kW)	1	8.517	21.808	41.433	62.174	83.909	/	1	/		
Output power	(Po) (kW)	1	8.042	21.043	40.360	60.719	81.979	/	1	/		
Output efficier	ncy(%)	1	94.4	96.5	97.4	97.7	97.7	/	1	/		
Input energy (Wi) (Wh)	1	712	1821	3461	5194	7009	1	1	/		
Output energy	(Wo) (Wh)	1	672	1757	3371	5072	6848	/	1	/		
Energy efficie	ncy(%)	1	94.4	96.5	97.4	97.7	97.7	/	1	/		
Remark:			•									

Page 26 of 38

Remark:

Page 27 of 38

Report No. GZES230100085502

PV input voltage	b)	b) The inverter's nominal voltage 630 V (±9.45 V)										
Temperature (°C)				2	5 °C ± 5 °C	C						
Operating period for energy measurement (min)					5							
Percentage of rated output VA	1	10%	25%	50%	75%	100%	120%(*)	1	/			
Input voltage (V)	1	632.7	634.2	627.7	626.2	627.5	/	1	1			
Input voltage ripple (V)	1	1.3	1.3	1.3	1.2	1.3	/	1	1			
Input current (A)	1	12.9	31.9	63.2	94.8	125.8	/	1	/			
Input current ripple (A)	1	2.0	2.0	2.7	2.0	2.0	/	1	/			
Input power (Pi) (kW)	1	8.185	20.238	39.638	59.374	78.951	/	1	/			
Output power (Po) (kW)	1	7.794	19.750	39.071	58.555	77.948	/	1	/			
Output efficiency(%)	1	95.2	97.6	98.6	98.6	98.7	/	1	/			
Input energy (Wi) (Wh)	1	683	1691	3314	4959	6596	/	1	/			
Output energy (Wo) (Wh)	1	650	1650	3267	4891	6512	/	1	1			
Energy efficiency(%)	1	95.2	97.6	98.6	98.6	98.7	/	1	1			

Remark:

Page 28 of 38

Report No. GZES230100085502

PV input voltage	c)	90% of t	he inverte	er's maxim	um input v	oltage 850	O V (± 12.7	75 V)	
Temperature (°C)				2	25°C ± 5°C	;			
Operating period for energy measurement (min)					5				
Percentage of rated output VA	/	10%	25%	50%	75%	100%	120%(*)	1	/
Input voltage (V)	1	850.0	845.4	849.4	848.7	849.1	/	1	1
Input voltage ripple (V)	1	1.2	1.2	2.7	1.2	1.2	/	1	1
Input current (A)	/	10.2	25.0	49.3	72.4	96.1	/	1	1
Input current ripple (A)	/	2.0	3.0	4.7	2.3	2.0	/	1	1
Input power (Pi) (kW)	/	8.663	21.131	41.910	61.422	81.604	/	1	1
Output power (Po) (kW)	/	8.018	20.376	40.892	60.108	79.931	/	1	1
Output efficiency(%)	/	92.6	96.4	97.6	97.9	97.9	/	1	1
Input energy (Wi) (Wh)	1	723	1765	3500	5134	6821	1	1	1
Output energy (Wo) (Wh)	/	669	1702	3415	5024	6681	/	1	/
Energy efficiency(%)	/	92.5	96.4	97.6	97.9	97.9	/	1	1

Remark:

Page 29 of 38

TABLE	Efficiency reco	ording a	and efficie	nt calculatio	n sheet for	60 Hz							
power condition	oner type	Grid-c	connected										
Model:		ASW	100K-LT										
Parameters o	f power	Minim	num rated	input volta	ge:200 V								
conditioner		Nomi	nal voltage	e: 630 V									
		Maxir	num input	voltage: 1	100 V								
		MPP	Γ voltage r	ange: 200	~ 1000 V								
		MPP	Γ voltage r	ange with f	ull power: 4	160 ~ 850 V	′						
		Rated	d output vo	oltage: 230	V								
		Rated	ed output frequency: 60 Hz										
		1	red output power: 100000 W										
		90% of this ra	te: According to the user manual, the minimum rated input voltage is 200 V, and % of the inverter's maximum input voltage is 90%*1100 V=990 V. However, in a range, the inverter can't output full power. So, for this test, 460 V were used tead of 200 V, and 850 V were used instead of 990 V.										
PV input volta	ige		a) Manufacturer's minimum rated input voltage 460 V (±6.90 V)										
Temperature	(°C)		25 °C ± 5 °C										
Operating per energy measu (min)			5										
Percentage of output VA	f rated	1	10%	25%	50%	75%	100%	120%(*)	/	/			
Input voltage	(V)	/	462.8	462.0	457.7	457.9	456.7	/	/	1			
Input voltage	ripple (V)	/	1.2	1.2	1.2	1.2	1.0	/	1	/			
Input current	(A)	/	23.9	57.6	112.2	167.7	224.5	/	/	/			
Input current	ripple (A)	/	1.7	2.0	2.3	2.0	1.7	/	/	/			
Input power (F	Pi) (kW)	/	11.040	26.626	51.335	76.779	102.532	/	/	/			
Output power	(Po) (kW)	/	10.473	25.777	50.083	75.021	100.164	/	1	1			
Output efficie	ncy (%)	/	94.9	96.8	97.6	97.7	97.7	1	1	1			
Input energy ((Wi) (Wh)	/	922	2227	4289	6415	8562	1	1	1			
Output energy	y (Wo) (Wh)	/	874	2156	4184	6268	8364	/	1	1			
Energy efficie	ncy(%)	/	94.8	96.8	97.6	97.7	97.7	/	1	1			
Remark:													

^(*) If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived.

Page 30 of 38

Report No. GZES230100085502

PV input voltage			b) The ii	nverter's n	ominal vol	tage 630	V (±9.45 \	')				
Temperature (°C)					25 °C ± 5 °	,C						
Operating period for energy measurement (min)		5										
Percentage of rated output VA	1	10%	25%	50%	75%	100%	120%(*)	1	/			
Input voltage (V)	1	636.0	629.3	627.4	629.0	626.0	/	1	1			
Input voltage ripple (V)	1	1.3	1.7	1.0	1.2	1.8	/	1	1			
Input current (A)	/	15.6	40.6	78.8	107.7	157.2	/	1	1			
Input current ripple (A)	1	2.0	1.7	1.7	2.0	2.0	/	1	1			
Input power (Pi) (kW)	/	9.927	25.548	49.470	67.757	98.417	/	1	1			
Output power (Po) (kW)	1	9.518	24.991	48.807	66.869	97.089	/	1	1			
Output efficiency (%)	1	95.9	97.8	98.7	98.7	98.7	/	1	1			
Input energy (Wi) (Wh)	1	829	2135	4132	5660	8210	/	1	1			
Output energy (Wo) (Wh)	1	795	2088	4076	5586	8099	/	1	1			
Energy efficiency(%)	1	95.9	97.8	98.6	98.7	98.6	/	1	1			

^(*) If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived.

Page 31 of 38

Report No. GZES230100085502

PV input voltage		c) 90% of the inverter's maximum input voltage 850 V (± 12.75 V)										
Temperature (°C)				2	25 °C ± 5 °	С						
Operating period for energy measurement (min)		5										
Percentage of rated output VA	1	10%	25%	50%	75%	100%	120%(*)	1	/			
Input voltage (V)	1	845.6	846.4	847.9	848.6	848.3	/	1	/			
Input voltage ripple (V)		1.3	1.3	1.2	1.2	1.2	/	1	1			
Input current (A)	/	12.6	30.6	60.6	90.3	120.2	/	1	/			
Input current ripple (A)		2.0	1.7	1.7	2.0	1.7	/	1	1			
Input power (Pi) (kW)	/	10.695	25.860	51.389	76.617	101.938	/	1	1			
Output power (Po) (kW)	/	10.035	25.035	50.217	75.015	99.828	/	1	1			
Output efficiency(%)	/	93.8	96.8	97.7	97.9	97.9	/	1	1			
Input energy (Wi) (Wh)	/	894	2160	4304	6431	8516	/	1	1			
Output energy (Wo) (Wh)	/	838	2091	4206	6297	8340	/	1	1			
Energy efficiency(%)	/	93.7	96.8	97.7	97.9	97.9	/	1	1			

^(*) If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived.

TABLE E	fficiency re	ecording	and efficie	ent calcula	ation shee	et for 60 H	Z					
power conditioner	r type	Grid-cor	nected									
Model:		ASW11	0K-LT									
Parameters of poconditioner	ower	Nomina Maximu MPPT v MPPT v Rated o Rated o Rated o Note: Ac 90% of this rang	I voltage: m input v oltage ra oltage ra utput volt utput frec utput pov ecording t the invert ge, the in	roltage: 1 nge: 200 nge with rage: 230 quency: 6 ver: 1100 o the use er's maxi verter car	100 V ~ 1000 V full power V 0 Hz 00 W r manual, mum inpu	the minin it voltage full power	50 V num rated is 90%*1.7 So, for the	100 V=990 his test, 40	V. Howe	ever, in		
PV input voltage			a) Manufacturer's minimum rated input voltage 460 V (±6.90 V)									
Temperature (°C)	25 °C ± 5 °C										
Operating period energy measurer (min)		5										
Percentage of ratioutput VA	ted	1	10%	25%	50%	75%	100%	120%(*)	1	/		
Input voltage (V)		1	458.3	456.2	456.9	459.9	456.5	/	1	1		
Input voltage ripp	ole (V)	1	2.0	1.2	1.3	1.0	1.0	/	1	1		
Input current (A)		1	24.9	59.6	120.7	184.1	242.6	/	1	1		
Input current ripp	le (A)	1	2.0	2.0	2.0	1.7	2.0	/	1	1		
Input power (Pi) ((kW)	1	11.404	27.172	55.143	84.662	110.731	/	1	1		
Output power (Po	o) (kW)	1	10.856	26.333	53.814	82.697	108.095	/	1	1		
Output efficiency	(%)	1	95.2	96.9	97.6	97.7	97.6	1	1	/		
Input energy (Wi)) (Wh)	/	952	2266	4602	7070	9251	1	1	1		
Output energy (V	Vo) (Wh)	/	906	2196	4491	6906	9031	1	1	/		
Energy efficiency Remark:	′(%)	1	95.2	96.9	97.6	97.7	97.6	1	1	1		

Page 32 of 38

^(*) If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived.

Page 33 of 38

Report No. GZES230100085502

PV input voltage		b) The inverter's nominal voltage 630 V (±9.45 V)										
Temperature (°C)		25 °C ± 5 °C										
Operating period for energy measurement (min)		5										
Percentage of rated output VA	/	10%	25%	50%	75%	100%	120%(*)	1	1			
Input voltage (V)	1	629.0	628.8	628.5	632.2	623.6	/	1	/			
Input voltage ripple (V)	1	1.2	1.2	1.3	1.0	1.2	/	1	/			
Input current (A)	/	17.9	44.0	86.6	132.1	176.3	/	1	/			
Input current ripple (A)	/	1.7	2.0	2.0	2.3	2.0	/	1	/			
Input power (Pi) (kW)	1	11.286	27.640	54.423	83.518	109.924	/	1	1			
Output power (Po) (kW)	1	10.861	27.065	53.695	82.424	108.465	/	1	1			
Output efficiency(%)	1	96.2	97.9	98.7	98.7	98.7	/	1	1			
Input energy (Wi) (Wh)	1	943	2310	4541	7083	9685	/	1	1			
Output energy (Wo) (Wh)	/	907	2262	4481	6990	9557	1	1	/			
Energy efficiency(%)	1	96.2	97.9	98.7	98.7	98.7	1	1	1			

^(*) If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived.

Page 34 of 38

Report No. GZES230100085502

PV input voltage		c) 90% of the inverter's maximum input voltage 850 V (± 12.75 V)										
Temperature (°C)				2	5°C ± 5°C							
Operating period for energy measurement (min)					5							
Percentage of rated output VA	/	10%	25%	50%	75%	100%	120%(*)	1	/			
Input voltage (V)	1	849.3	846.6	847.9	848.2	849.5	1	1	1			
Input voltage ripple (V)	1	1.0	1.2	1.2	1.3	1.0	1	1	1			
Input current (A)	/	13.9	33.9	66.7	96.5	132.2	1	1	/			
Input current ripple (A)	/	2.0	1.7	2.0	2.3	2.3	1	1	/			
Input power (Pi) (kW)	/	11.811	28.734	56.513	81.848	112.316	1	1	1			
Output power (Po) (kW)	/	11.015	27.729	55.260	80.156	109.971	1	1	1			
Output efficiency(%)	/	93.3	96.5	97.8	97.9	97.9	1	1	/			
Input energy (Wi) (Wh)	/	987	2405	4724	6836	9107	1	1	/			
Output energy (Wo) (Wh)	/	921	2321	4619	6697	8923	1	1	1			
Energy efficiency(%)	/	93.3	96.5	97.8	98.0	98.0	1	1	1			

^(*) If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived.

Page 35 of 38

Report No. GZES230100085502

TABLE	No load loss for 50 Hz		Р	
power conditioner type		Utility-interactive		
ASW75K-LT				
Measure input voltage (V)		650.7		
Measured input power (W)		15.5		
ASW80K-LT				
Measure input voltage (V)		650.6		
Measured input power (W)		13.0		
ASW100K-LT				
Measure input voltage (V)		650.6		
Measured input power (W)		11.3		
ASW110K-LT				
Measure input voltage (V)		650.6		
Measured input power (W)		9.1		
Remark: No load loss is measured when the power conditioner works at rated input voltage and its load is disconnected.				

TRF No. IEC 61683: 1999

Page 36 of 38

Report No. GZES230100085502

TABLE	No load loss for 60 Hz		Р	
power conditioner type		Utility-interactive		
ASW75K-LT				
Measure input voltage (V)		650.6		
Measured input power (W)		15.7		
ASW80K-LT				
Measure input voltage (V)		650.6		
Measured input power (W)		15.3		
ASW100K-LT				
Measure input voltage (V)		650.6		
Measured input power (W)		15.3		
ASW110K-LT				
Measure input voltage (V)		650.5		
Measured input power (W)		15.4		
Remark: No load loss is measured when the power conditioner works at rated input voltage and its load is disconnected.				

TRF No. IEC 61683: 1999

Page 37 of 38

Report No. GZES230100085502

TABLE	Standby loss for 50 Hz		Р
power conditioner type		Utility-interactive	
ASW75K-LT			
Measure input voltage (V)		230.4	
Measured input power (W)		-54.1	
ASW80K-LT			
Measure input voltage (V)		230.4	
Measured input power (W)		-54.1	
ASW100K-LT			
Measure input	voltage (V)	230.4	
Measured input power (W)		-54.1	
ASW110K-LT			
Measure input voltage (V)		230.4	
Measured input power (W)		-54.1	
Remark: Standby loss is measured when the power conditioner works at rated input voltage and in standby mode.			

TRF No. IEC 61683: 1999

Page 38 of 38

Report No. GZES230100085502

TABLE	Standby loss for 60 Hz		Р
power conditioner type		Utility-interactive	
ASW75K-LT			
Measure input voltage (V)		230.5	
Measured input power (W)		-49.6	
ASW80K-LT			
Measure input voltage (V)		230.5	
Measured input power (W)		-49.6	
ASW100K-LT			
Measure input voltage (V)		230.5	
Measured input power (W)		-49.6	
ASW110K-LT			
Measure input	voltage (V)	230.5	
Measured input power (W)		-49.6	
Remark: Standby loss is measured when the power conditioner works at rated input voltage and in standby mode.			

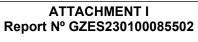
--- End of test report---

Page 1 of 6

IEC 61683: 1999 (50/60 Hz)

ATTACHMENT I

(Pictures of the EUT and Electrical Schemes)


IEC 61683: 1999 (50/60 Hz)

1 PICTURES

Page 3 of 6

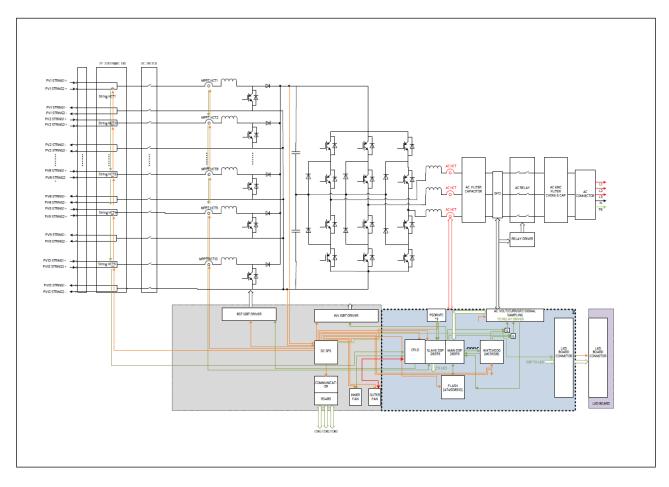
SGS

IEC 61683: 1999 (50/60 Hz)

Page 4 of 6

IEC 61683: 1999 (50/60 Hz)

Updates


Safety
Local version: V610-12001-00

Page 6 of 6

IEC 61683: 1999 (50/60 Hz)

2 ELECTRICAL SCHEMES

Page 1 of 5

IEC 61683: 1999 (50/60 Hz)

ATTACHMENT II

(Testing information)

Page 2 of 5

IEC 61683: 1999 (50/60 Hz)

1 TESTING CIRCUIT

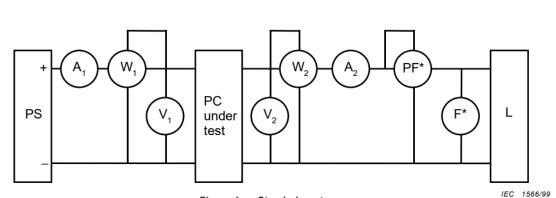


Figure 1a - Stand-alone type

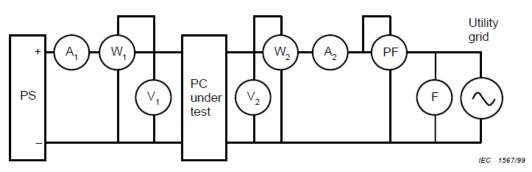


Figure 1b - Utility-interactive type

PC power conditioner

PS variable voltage-current d.c. power supply

A₁ DC ammeter

A2 AC or d.c. ammeter

W₁ DC wattmeter

W₂ AC or d.c. wattmeter

L load

F frequency meter

V₁ DC voltmeter

V2 AC or d.c. voltmeter

PF power factor meter

Current and voltage clamps have been connected to the inverter input/output for all the tests.

All the tests and checks have been performed in accordance with the reference standard under testing.

Page 3 of 5

IEC 61683: 1999 (50/60 Hz)

2 TESTING EQUIPMENT

From	No.	Equipment Name	Trademark / Model	Equipment No.	Calibration Period
	1	Digital Oscilloscope	Tektronix/ MDO3022	GZE007-41	2022/10/08 to 2023/10/07
	2	Differential probe	Tektronix/ P5210A	GZE007-25	2022/01/20 to 2023/01/19
SGS	3	Current probe	CA/PAC 12	GZE007-31	2022/10/18 to 2023/10/17
	4	Power Analyzer	Yokogawa/ WT3000	GZE006-72	2022/06/23 to 2023/06/22
	5	Temperature & Humidity meter	KTJ/ TA218D	GZE020-67	2022/05/05 to 2023/05/04

IEC 61683: 1999 (50/60 Hz)

Items	Specifications
1) PV array simulator	·
a) Voltage range	0 – 1500 Vdc
b) Current range	0 – 200 A
2) AC Source	
a) Output wiring	Three phase
b) Output capacity	200 kVA
c) Output voltage	0 - 300 Vrms
d) Output frequency	30 - 100 Hz
e) Voltage stability	1
f) Output voltage distortion	1
3) Power Analyzer	·
a) Voltage range	0 – 1000 Vdc, 0 – 1000 Va.c.
b) Current range	0 – 200 A
c) Frequency range (accuracy)	0 – 999.99 kHz (0.005%)
d) Measurement items	Voltage (V)
	Current (A)
	Active power (W)
	Reactive power (Var)
	Volt-ampere (VA)
	Power factor (PF)
	Frequency (Hz) Electric energy (Wh)
4) Digital Oscilloscope	Licetile chargy (Will)
a) Sampling speed	2.5GS/s
b) Recording device	Memory record and USB reading
c) Time accuracy	± 10 ppm
5) AC load	_ 10 kb
a) Resistive load	Capacity: 150.36 kW
b) Inductive load	Capacity: 150.36 kVAr
c) Capacitive load	Capacity: 150.36 kVAr
o, Sapasitive load	Capacity. 100.00 KV/II

ATTACHMENT II

Report Nº GZES230100085502

IEC 61683: 1999 (50/60 Hz)

Page 5 of 5

3 MEASUREMENT UNCERTAINTY

Magnitude	Uncertainty
Voltage measurement uncertainty	±1.5 %
Current measurement uncertainty	±2.0 %
Frequency measurement uncertainty	±0.2 %
Time measurement uncertainty	±0.2 %
Power measurement uncertainty	±2.5 %
Phase Angle	±1°
Temperature	±3° C

Note1: Measurement uncertainties showed in this table are maximum allowable uncertainties. The measurement uncertainties associated with other parameters measured during the tests are in the laboratory at disposal of the petitioner.

Note2: Where the standard requires lower uncertainties that those in this table. Most restrictive uncertainty has been considered.