

Poradnik instalacyjny

FALOWNIK HYBRYDOWY

Seria ASW H-T1

W związku z dużą ilością pytań powstał ten poradnik, dotyczący pierwszego uruchomienia falownika hybrydowego serii ASW H-T1.

Spis Treści

Podłączenie	3
Sprawdzamy wersję oprogramowania	5
Odpowiednie podłączenie przekładników	. 6
Podłączenie baterii	19
Czemu nie działa harmonogram w trybie niestandardowyn ustawień baterii?	n 21
Konsumpcja wzrasta wraz z produkcją z PV	23
Częste błędy	26

Podłączenie

Ważny jest poniższy schemat

Pamiętaj:

- Na złącze backup nie wolno podawać napięcia!!!
- Złącza backup jest to tylko wyjście które zasila odbiorniki (w razie awarii sieci na tym złączu dalej będzie napięcie z baterii i PV)
- Zwróć uwagę, że przewód neutralny N backup musi być podłączony.

Na poniższym rysunku widzimy gniazda połączeniowe i ich opis

Funkcja	Oznaczenie	Opis
Gniazdo wejściowe łańcucha PV 1	PV1+	Wejście dodatnie łańcucha PV 1
	PV1-	Wejście ujemne łańcucha PV 1
Gniazdo wejściowe łańcucha PV 2	PV2+	Wejście dodatnie łańcucha PV 2
	PV2-	Wejście ujemne łańcucha PV 2
Interfejs komunikacyjny	COM1	Ta funkcja jest zarezerwowana
	COM2	Interfejs klucza sprzętowego WiFi
Gniazdo BAT	BAT+	Wejście dodatnie baterii
	BAT-	Wejście ujemne baterii
Interfejs linii sygnałowej	UPDATE	Gniazda aktualizacji
		oprogramowania
	DRM	Funkcja tymczasowo niedostępna
	СТ	Przyłącze CT (przekładnik prądowy)
	DRY IO	Nie aktywne
	BMS	Komunikacja BMS z baterią
	CAN	Komunikacja CAN
	NTC	Nie aktywne
Sieć energetyczna		Faza L1 linii sieci

Funkcja	Oznaczenie	Opis
	2	Faza L2 linii sieci
	3	Faza L3 linii sieci
	4	N linii sieci
	5	Uziom linii sieci
GEN	6	Faza L1
(Funkcja agregatu	$\overline{\mathcal{O}}$	Faza L2
prądotwórczego jest obecnie	8	Faza L3
niedostępna)	9	N
	10	Uziom
Backup1	(11)	Faza L1 linii Backup1
	(12)	Faza L3 linii Backup1
	13	Faza L3 linii Backup1
	14)	N linii Backup1
	15	Uziom linii Backup1
Backup2	16	Faza L1 linii Backup2
	17)	Faza L2 linii Backup2
	18	Faza L3 linii Backup2
	19	N linii Backup2
	20	Uziom linii Backup

Sprawdzamy wersję oprogramowania

Na dzień 26.10.2023 jest to 10328 oraz V610-60005-26

Dodatkowo wersja modułu wifi : 22401-014R-m

Jeśli oprogramowanie jest starsze możemy zadzwonić na serwis z prośbą o zdalną aktualizację (warunek=falownik musi być online)

POBIERZ

Lub możemy skorzystać z poniższego linku i wykonać aktualizację samodzielnie:

Odpowiednie podłączenie przekładników

Na poniższym schemacie widzimy prawidłowe podłączenie przekładników.

Pamiętaj:

- Każdy przekładnik ma inny kolor przewodu
- Każdy kolor musi odpowiadać odpowiedniej fazie zgodnie ze schematem
- Przekładniki muszą być strzałką w stronę sieci
- Jeśli kolejność nie będzie zachowana będą nieprawidłowe dane w aplikacji oraz falownik będzie działał nie poprawnie
- Nie odłączaj przekładników w czasie kiedy płynie przez nie prąd groźba porażenia oraz pożaru oraz uszkodzenia przekładnika
- Nie odłączaj przekładników, ani nie zmieniaj kolejności przewodów na listwie połączeniowej
- Odbiorniki które mają być na sieci powinny być podłączone w miejscu w którym wskazuje strzałka (oczywiście odbiorniki powinny być odpowiednio zabezpieczone zgodnie z przepisami)
- Złącza backup jest to tylko wyjście które zasila odbiorniki (w razie awarii sieci na tym złączu dalej będzie napięcie z baterii i PV)
- Należy przewód neutralny (N) odbiorników które są podłączone pod backup, podłączyć również pod backup (urządzenia korzystające z backup muszą mieć podłączony również przewód N do tego złącza)

Ważna jest odpowiednia kolejność!

W zestawie jest przewód który łączy przekładnik z falownikiem. Ma długość ok 1 metra. Jeśli zachodzi konieczność zastosowania dłuższego przewodu możemy zastosować przewód cat 5 (24awg) ekranowany i wydłużyć do max 50 metrów.

Pamiętaj:

- Przewód musi być dokładnie zaciśnięty
- Zwróć uwagę na poprawność połączeń

Co jeśli wydaje nam się że przekładniki są poprawnie podłączone ale są daleko od falownika, jak możemy mieć 100% pewności że jest ok?

Należy sprawdzić czy przekładniki są założone na odpowiednie fazy Powinniśmy w tym celu wykonać pomiar napięcia w kilku miejscach.

Dla pewności możemy wykonać pomiar pomiędzy L1 i N (powinno być zgodne z siecią, około 230V).

Dla pewności możemy wykonać pomiar pomiędzy L2 i N (powinno być zgodne z siecią, około 230V).

Dla pewności możemy wykonać pomiar pomiędzy L3 i N (powinno być zgodne z siecią, około 230V).

Poniżej przykład skrzyżowania przewodów

Na przykład jest po drodze jakaś rozdzielnica:

Poniżej poprawne podłączenie przekładników do listwy zaciskowej.

Sprawdzenie podłączenia przekładników do falownika (np. po wykonaniu dłuższego przewodu do przekładników – złączki rj45):

W tym celu należy:

Kliknąć <table-cell-rows> w prawym dolnym rogu

wybrać połączenie z siecią (jeśli falownik jest połączony z chmurą i niebieska dioda świeci się)

kliknąć konfiguracja parametrów 🔯

.

1.1.1 8 (1)

畲

.

av. ..

plant

Configure

parameters

Cardyan paratetore for indexeas investor, chequig p.b.

Choose action

Create or modify

2

Wybrać falownik do którego chcemy wejść w ustawienia

Zeskanować kod modułu komunikacyjnego

Wejść w szczegóły falownika

Następnie należy

Odłączyć przekładniki i zostawić tylko jeden

WAŻNE!

Rozpinamy przekładniki w ten sposób

Pamiętaj:

Nie wolno odłączać przewodów przekładnika jak płynie prąd przez przekładnik!!!

Odłączamy najpierw fazę 1 w falowniku hybrydowy

tą na której założony jest przekładnik z przewodem żółtym i sprawdzamy czy zanikło nam napięcie na fazie L1 (U1) czy na fazie L3 (U3) w aplikacji, podłączamy ponownie przewód.

Zostawiamy przekładnik z przewodem żółtym pozostałe rozpinamy i sprawdzamy czy w aplikacji widzimy jakąś wartość prądu na tej samej fazie na

której zanikło nam wcześniej napięcie, jeśli zanikło nam na L1 (U1) to powinniśmy widzieć w tym miejscu.

A na pozostałych fazach 0 (w przypadku jak w budynku będzie mały pobór prądu należy na tej fazie podłączyć jakieś obciążenie).

AC		
-	- U1	236.6 V
L		3.6 A
)	U2	236.6 V
		0.0 A
+	U3	235.1 V
		0.0 A
DC		
+	PV1	434.5 V
		5.2 A
+	PV2	213.2 V
		5.2 A
Irver	ter SN	LM008K09S2250061
E-too	lay	8.2 kWh
E-tot	al.	11.8 kWh
H-tot	əl	24 h
Powe	r.	3406 W

Jeśli widzimy w tym miejscu jak na obrazku to znaczy że przekładnik jest podłączony do falownika właściwie (lub na U3 jeśli wcześniej nam zanikło napięcie na U3 w aplikacji), jeśli widzimy wartość na innej fazie to znaczy że jest błąd w podłączeniu przekładnika do falownika (najczęstszy błąd to błąd na złączce rj45 – pomyłka przy wykonaniu przez instalatora dłuższego przewodu niż ten był w zestawie)

Zostawiamy przekładnik z przewodem zielonym pozostałe rozpinamy i sprawdzamy czy w aplikacji widzimy jakąś wartość prądu na L2 (U2).

A na pozostałych fazach 0 (w przypadku jak w budynku będzie mały pobór prądu należy na tej fazie podłączyć jakieś obciążenie).

	11.000
EM008K0952	250061
AC	
→ U1	235.8 V
	0.0 A
→ U2	235.5 V
	5.0 A
→ U3	234.1 V
	A 0.0
DC	
→ PV1	435.5 V
	5.6 A
→ PV2	211.3 V
	5.8 A
Inverter SN	LM008K09S2250061
E-today	8.1 kWh
E-total	11.7 kWh
H-total	24 h
Power	3679 W
	2 S

Jeśli widzimy w tym miejscu jak na obrazku to znaczy że przekładnik jest podłączony do falownika właściwie, jeśli widzimy wartość na innej fazie to znaczy że jest błąd w podłączeniu przekładnika do falownika (najczęstszy błąd to błąd na złączce rj45 – pomyłka przy wykonaniu przez instalatora dłuższego przewodu niż ten był w zestawie), lub zamiana przewodów na zielonej listwie zaciskowej.

Odłączamy najpierw fazę 3 w falowniku hybrydowy tą na której założony jest przekładnik z przewodem czerwonym i sprawdzamy czy zanikło nam napięcie na fazie L3 (U3) czy na fazie L1 (U1) w aplikacji, podłączamy ponownie przewód.

Zostawiamy przekładnik z przewodem Czerwonym pozostałe rozpinamy i sprawdzamy czy w aplikacji widzimy jakąś wartość prądu na tej samej fazie na której zanikło nam wcześniej napięcie, jeśli zanikło nam na L3 (U3) to powinniśmy widzieć w tym miejscu. A na pozostałych fazach 0 (w przypadku jak w budynku będzie mały pobór prądu należy na tej fazie podłączyć jakieś obciążenie).

←	LM008K09S2	250061
AC		
\rightarrow	U1	236.9 V
		0.0 A
\rightarrow	U2	236.7 V
		0.0 A
\rightarrow	U3	236.0 V
L		3.0 A
DC		
+	PV1	444.7 V
		5.7 A
\rightarrow	PV2	211.2 V
		6.0 A
Invert	er SN	LM008K09S2250061
E-toda	ау	8.0 kWh
E-tota	48	11.7 kWh
H-tota	sl	24 h
Powe	r	3816 W
		•

Jeśli widzimy w tym miejscu jak na obrazku to znaczy że przekładnik jest podłączony do falownika właściwie (lub na U1 jeśli wcześniej nam zanikło napięcie na U1 w aplikacji), jeśli widzimy wartość na innej fazie to znaczy że jest błąd w podłączeniu przekładnika do falownika (najczęstszy błąd to błąd na złączce rj45 – pomyłka przy wykonaniu przez instalatora dłuższego przewodu niż ten był w zestawie).

Podłączenie baterii

Pamiętaj:

- Gniazdo CAN baterii powinien być połączony z gniazdem BMS falownika
- Użyj odpowiedniego przewodu
- Sprawdź aktualizację oprogramowania BMS baterii (w przypadku Pylontech).

Dyness:

Solplanet:

W niektórych przypadkach ważna jest kolejność podłączania źródeł energii.

Poprawna kolejność to:

- Bank energii (po uruchomieniu go, należy odczekać około minuty i ponownie przytrzymać przycisk uruchamiania, aż falownik się uruchomi)
- 2. AC i Backup
- 3. DC

Czemu nie działa harmonogram w trybie niestandardowym ustawień baterii?

Jeśli mamy problem jak powyżej powinniśmy przykładowo ustawić jeden harmonogram przeciwny.

Problem ten nie występuje na oprogramowaniu

Master: 10328

Slave: V610-60005-26

Moduł wifi : 22401-014R-m

lub nowszym.

Przykład poniżej:

W tym przypadku rozładowanie może wynosić nawet 0 W, ale ważne żeby był ustawiony harmonogram. W trybie niestandardowym gdzie niema ustawionych harmonogramów bateria działa jak w trybie na potrzeby własne.

Konsumpcja wzrasta wraz z produkcją z PV

Jeśli mamy sytuację jak poniżej:

Gdzie konsumpcja energii wzrasta proporcjonalnie wraz produkcją, oznacza to jakiś błąd na przekładnikach. Jeśli nie zweryfikowaliśmy

poprzednich punktów to powinniśmy sprawdzić na portalu czy mamy dane ze wszystkich przekładników.

W tym celu należy kliknąć na portalu nasz falownik:

P. Dower plant center: A	Power plant device	
Power plant overview	Inverter Monitor Meter Battery Charging pile Environmental monitoring instrument	
Power plant map		
Power plant grouping	Inverter type: Processelect V	
Device conter Y		' I
t User center 🔍	Status Inverter Inverter senal Power Power generation Iotal power Iotal power	
Task center V	• 2023-08-17 Download M	cre
Report center 🔍	Normal ASW12KH-T1 LM00000000000 8114kW 20.7kWn 992.2kWn 13:16:25 v	
) Tault senter 🔍	1-1 ct 1 items < 1	>
Command Contr Y		
P. Service Center Y		

I sprawdzić dane z przekładników:

Jeśli widzimy wartość bliską 0 to mamy pewność że:

- przekładnik ma przerwę w obwodzie elektrycznym (np. rj45 jest źle nie dociśnięta)
- przekładnik jest źle zaciśnięty na przewodzie (nie dociśnięty)
- przekładnik jest uszkodzony ponieważ założyliśmy go na przewód jak płynął przez niego duży prąd a był nie podłączony elektrycznie do falownika (najpierw podłączamy przekładniki elektrycznie do falownika później zakładamy na przewody)

Jeśli są dane ze wszystkich przekładników musimy postępować zgodnie z punktem 3 tej instrukcji.

Częste błędy

- nie prawidłowa kolejność przekładników
- nie prawidłowo kierunek przepływu prądu na przekładnikach (strzałka powinna być w stronę sieci).
- źle podłączona bateria CAN baterii
- czasami jest połączony CAN baterii z CAN falownika
- poprawne połączenie to: CAN baterii powinien być połączony z BMS falownika
- stare oprogramowanie
- przekładniki założone w złym miejscu, przykłady poniżej:

Pamiętaj:

Odbiorniki muszą być odpowiednio zabezpieczane zgodnie z przepisami!

www.solplanet.net