

ERITA

TEST REPORT EN 50549-1:2019

Requirements for generating plants to be connected in parallel with distribution networks - Part 1-1:

Connection to a LV distribution network - Generating plants up to and including Type B

Report reference number	20TH0200-EN50549-1_0
Date of issue	2020-01-14
Total number of pages:	105
Testing laboratory name	Bureau Veritas Consumer Products Services Germany GmbH
Address	Businesspark A96 86842 Türkheim Germany
Accrediation :	Deutsche Akkreditierungsstelle D-PL-12024-03-03
Applicant's name:	AISWEI New Energy Technology(Jiangsu) Co.,Ltd
Address :	Building 9,No.198 Xiangyang Road,215011 Suzhou,P.R.China
Test specification	
Standard	EN 50549-1:2019
	with deviations according the national network and system protection for Poland
Certificate:	Certificate of compliance
Test report form number	EN 50549-1
Master TRF	Bureau Veritas Consumer Products Services Germany GmbH
Test item description : Trademark	PV inverter
Model / Type:	ASW1000S-S, ASW1500S-S, ASW2000S-S, ASW3000S-S
This report is governed by, and incorporates by reference, CPS Condit business/cps/about-us/terms-conditions/and is intended for your exclus only with our prior written permission. This report sets forth our findings	tions of Service as posted at the date of issuance of this report at <u>http://www.bureauveritas.com/home/about-us/our-</u> sive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted s solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of

business/ps/abul-us/terms-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Report No.: 20TH0200-EN50549-1_0

ASW1000S-S ASW1500S-S ASW2000S-S ASW3000S-S Ratings: MPP DC input voltage [V]: 80-550Vdc Input DC voltage range [V].....: 80-580Vdc Input DC current [A]: 2 x 12A 220/230Vac, 50/60Hz Output AC voltage [V]: Output AC current [A]..... Max.5,0 Max.7,5 Max.10,0 Max.13,6 Nominal Output power [KW]: 1,000 1,500 2,000 3,000 Max.Output apparent power [KVA]..: 1,000 1,500 2,000 3,000

Page 2 of 105

Testing Location:	AISWEI New Energy Technology(Jiangsu) Co.,Ltd		
Address:	Building 9, No. 198 Xiangyang Road, 215011 Suzhou, P.R. China		
Tested by (name and signature):	Weizhao Zheng	Zheng, We: zhao.	
Approved by (name and signature):	Georg Loritz	Georg Lorik	
Manufacturer's name	: AISWEI New Energy Technology(Jiangsu) Co.,Ltd		
Manufacturer address	Building 9,No.198 Xiangyang Road,215011 Suzhou,P.R.China		
Factory's name: Factory address:	AISWEI New Energy Technology (Yangzhong) Co., Ltd No.588 Gangxing Road, Yangzhong, Jiangsu P.R.China		

Document His	tory		
Date	Internal reference	Modification / Change / Status	Revision
2020-01-14	Weizhao Zheng	Initial report was written	0
Supplementary	information:		

٦

Test items particulars	
Equipment mobility:	Permanent connection
Operating condition:	Continuous
Class of equipment:	Class I
Protection against ingress of water:	IP65 according to EN 60529
Mass of equipment [kg]:	6,5kg
Test case verdicts	
Test case does not apply to the test object:	N/A
Test item does meet the requirement:	P(ass)
Test item does not meet the requirement:	F(ail)
Testing	
Date of receipt of test item:	2019-11-01
Date(s) of performance of test:	2019-12-10 to 2020-01-08
General remarks:	
The test result presented in this report the tested objects with the requirement without the written approval of the issue	relate only to the object(s) tested. The report shall state compliance of is of EN 50549-1. This report shall not be reproduced in part or in full ing testing laboratory.
"(see Annex #)" refers to additional info	ormation appended to the report.

"(see appended table)" refers to a table appended to the report.

Throughout this report a comma is used as the decimal separator.

This Test Report consists of the following documents:

- 1. Test Report
 - 4.4 Normal operating range
 - 4.5 Immunity to disturbances
 - 4.6 Active response to frequency deviation
 - 4.7 Power response to voltage variations and voltage changes
 - 4.8 EMC and power quality
 - 4.9 Interface protection
 - 4.10 Connection and starting to generate electrical power
 - 4.11 Ceasing and reduction of active power on set point
 - 4.13 Requirements regarding single fault tolerance of interface protection system and interface switch
- 2. Annex No. 3 Pictures of the unit
- 3. Annex No. 4 Test equipment list

Copy of marking plate

Max. input voltage	
	d.c. 580V
MPP voltage range	d.c. 80-550V
Max. input current	d.c. 12A
lsc PV(absolute maximum)	d.c. 18A
Rated grid voltage	a.c. 220/230V
Rated grid frequency	50/60Hz
Max. AC output active power	1000W
Max. AC output apparent power	1000VA
Max. continuous output current	a.c. 5A
Adjustable cos(φ)	0.8ind0.8cap
Operating temperature range	-25+60°C
Ingress protection	IP65
Protective class	1
Overvoltage category	II(PV) III(MAINS)
Supported DRM0, DRM5, DRM5, DRM5, DRM7, U	a., Ltd.

4	
4	Solplanet

Max. input voltage	d.c. 580V
MPP voltage range	d.c. 80-550V
Max. input current	d.c. 12A
lsc PV(absolute maximum)	d.c. 18A
Rated grid voltage	a.c. 220/230
Rated grid frequency	50/60Hz
Max. AC output active power	1500W
Max. AC output apparent power	1500VA
Max. continuous output current	a.c. 7.5A
Adjustable cos(ф)	0.8ind0.8cap
Operating temperature range	-25+60°C
Ingress protection	IP65
Protective class	1
Overvoltage category	II(PV) III(MAINS)
Supported DRMO, DRMS, DRM6, DRM7, D	RMB () <u>X</u> () X () X

Model: ASW3000S-S Max. input voltage	
Max. input voltage	_
	d.c. 580V
MPP voltage range	d.c. 80-55
Max. input current	d.c. 12A
Isc PV(absolute maximum)	d.c. 18A
Rated grid voltage	a.c. 220/2
Rated grid frequency	50/60Hz
Max. AC output active power	3000W
Max. AC output apparent power	3000VA
Max. continuous output current	a.c. 13.6A
Adjustable cos(φ)	0.8ind0.8
Operating temperature range	-25+60%
Ingress protection	IP65
Protective class	1
Overvoltage category	II(PV)
Supported DRM0, DRM5, DRM6, DRM7, I	a., Ltd.

Max. input voltage	d.c. 580V
MPP voltage range	d.c. 80-550V
Max. input current	d.c. 12A
lsc PV(absolute maximum)	d.c. 18A
Rated grid voltage	a.c. 220/230V
Rated grid frequency	50/60Hz
Max. AC output active power	2000W
Max. AC output apparent power	2000VA
Max. continuous output current	a.c. 10A
Adjustable cos(φ)	0.8ind0.8cap
Operating temperature range	-25+60°C
Ingress protection	IP65
Protective class	1
Overvoltage category	II(PV) III(MAINS)
Supported DRM0, DRM5, DR	а. 11d.
Web: www.answei-cecn.com	abou China

-

General product information:

The Solar converter converts DC voltage into AC voltage.

The input and output are protected by Varistors to Earth. The unit is providing EMC filtering at the output toward mains. The unit does not provide galvanic separation from input to output (transformerless). The output is switched off redundant by the high power switching bridge and two relays. This assures that the opening of the output circuit will also operate in case of one error.

This unit is a single-phase inverter, that it is combine with operation mode. The inverter is able to generate power from solar modules to feed the grid(utility), also feed in the power to grid from the PV array.

The Solar converter provides with PV array of input.

The input of Solar converter can be supplied from PV array only.

Slip-mode frequency shift detection was used for LOM protection.

Description of the electrical circuit:

The internal control is redundant built. It consists of Microcontroller Master DSP(U705) and Slave DSP(U710).

The Master DSP control the relays by switching signals; measures the PV voltage, PV current, Bus voltage, grid voltage, frequency, AC current with injected DC and the array insulation resistance to ground. In addition it tests the current sensors and the RCMU circuit before each start up.

The Slave DSP is measures the grid voltage, AC current, grid frequency and residual current, also can switch off the relays independently, and communicate with Master DSP each other.

The current is measured by a current sensor. The AC current signal and the injected DC current signal are sent to the Master DSP. The Master DSP tests and calibrates before each start up all current sensors.

The unit provides two relays in series in all output conductors. When single fault applied to one relay, alarm an error code on the mobile app or the upper computer, another redundant relay provides basic insulation maintained between the PV array and the mains. All the relays are tested before each start up. Both CPU can switch of the relays.

Differences of the models:

The models ASW1000S-S, ASW1500S-S, ASW2000S-S and ASW3000S-S are identical in hardware and software, and the output power derated by software.

The product was tested on:

Hardware: V1.0 Software: V1.0

All tests were performed on EUT of ASW3000S-S. Tests of the EUT of ASW3000S-S applicable for the models ASW1000S-S, ASW1500S-S and ASW2000S-S were performed on the concerned models and a statement is given at the relevant test.

General remarks:

The test results presented in this report relate only to the object(s) tested.

This document may be published or passed on in full only. Extraction of parts needs the written permission of Bureau Veritas Consumer Products Services GmbH.

"(see Annex #)" refers to additional information appended to the report.

"(see appended table)" refers to a table appended to the report.

Throughout this report a comma is used as the decimal separator.

The following suffixes are used for variables in tables and figures:

- "P_n" for the nominal active power:
 - $P_n = U_n x I_n x \cos \varphi_n$ (single-Phase); $P_n = \sqrt{3} U_n x I_n x \cos \varphi_n$ (three-Phase)
- "P_M" for the momentary power
- "(c)" for over-excited
- "(i)" for under-excited

Active and reactive power:

The regarded system of the voltage and current vectors is the load view (Figure 2):

• If the inverter feeds to the grid the active power is measured with negative sign. For the sake of reading the document the measured active infeed power has a positive sign

- If the inverter consumes inductive reactive power the reactive power is marked "inductive" or has a positive sign.
- If the inverter consumes capacitive reactive power the reactive power is marked "capacitive" or has a negative sign.

Default interface protection settings according EN 50549-1:2019:			
Parameter	Max. disconnection time	Min. operate time	Trip value
Over voltage – stage 1	3 s	0,1 s	230V +10% (253 V)
Over voltage – stage 2	0,2 s	0,1 s	230V +15% (264,5 V)
Under voltage	1,5 s	1,2 s	230V -15% (195,5V)
Over frequency	0,5 s	0,3 s	52 ,0Hz
Under frequency	0,5 s	0,3 s	47,5 Hz
An explicit Loss of Mains functionality shall be included. Established methods such as, but not limited to, Rate of Change of Frequency, Vector Shift or Source Impedance Measurement may be used. Where Source Impedance is measured, this shall be achieved by purely passive means, Any implementation which involves the injection of pulses onto the distribution network, shall not be permitted.			
ROCOF (where used)		2 s 2 Hz/s	
Reconnection settings for voltage		0,85 U _n ≤ U ≤ 1,10 U _n	
Connection settings for frequency (Normal operational start-up)		49,5 Hz ≤ f ≤ 50,1 Hz	
Reconnection settings for frequency (Automatic reconnection after tripping)		49,5 Hz ≤ f ≤ 50,2 Hz	
Reconnection time		≥ 60 s	
Active power gradient after reconnection		10%P _{Emax} /min	
Permanent DC-injection		0,5% of rated inverter output current or 20mA	
Loss of mains according EN 62116 Inverter shall disconnect within 2 s		onnect within 2 s.	
The stated currents and voltages are 'true r.m.s.'-values. The voltages in this table are - phase-to-neutral in 230 V single phase systems and 230/400 V systems, - phase-to-phase in a multiphase 230 V system.			
Tolerances on trip values: - Voltage: ± 1% of Un - Frequency: ± 0,05 Hz - Disconnection time : ± 10%			

The following deviations for Poland, have been applied according the EN 50549-1:2019:				
Parameter	operate time	Trip value		
ROCOF (where used)	5 s	0,4 Hz/s		
An explicit Loss of Mains functionality shall be included. Established methods such as, but not limited to, Rate of Change of Frequency, Vector Shift or Source Impedance Measurement may be used. Where Source Impedance is measured, this shall be achieved by purely passive means, Any implementation which involves the injection of pulses onto the distribution network, shall not be permitted.				
The stated currents and voltages are 'true r.m.s.'-values.				
The voltages in this table are				
- phase-to-neutral in 230 V single phase systems and 2	30/400 V systems,			
- phase-to-phase in a multiphase 230 V system.				
Tolerances on trip values:				
- Voltage: ± 1% of Un				
- Frequency: ± 0,05 Hz				
- Disconnection time : ± 10%				

	EN 50549:2019, clause 4: Tests	
Clause	Test requirement (According to table C.1)	Result
4.4	Normal operating range	Р
4.5	Immunity to disturbances	Р
4.6	Active response to frequency deviation	Р
4.7	Power response to voltage variations and voltage changes	Р
4.8	EMC and power quality	Р
4.9	Interface protection	Р
4.10	Connection and starting to generate electrical power	Р
4.11	Ceasing and reduction of active power on set point	Р
4.12	Remote information exchange	N/A
4.13	Requirements regarding single fault tolerance of interface protection system and interface switch	Р

EN 50549-1:2019: Normal operating range						
Clause	Test requirement	Test procedure according standard	Result			
4.4.2	Power response to over-frequency	EN 50438, Annex D.3.1	Р			
4.4.3	Power response to under-frequency	G99/1-4, clause A.7.3.2	Р			
4.4.4	Continuous operating voltage range	EN 50438, Annex D.3.1	Р			

4.4.2Operating frequency range4.4.4Continuous operating voltage range							
	(Over-voltage [V]:			253		
			er-voltage [V]:		195,5		
Setting va	alues	Over	-frequency [Hz]:			51,5	
	Ī	Unde	er-frequency [Hz]:			47,5	
- Test 1: U = 1 - Test 2: U = 1 - Test 3: U = 2 - Test 4: U = 2 - Test 5: U = 2 Test result:	 Test 1: U = 195,5 V; f = 47,5 Hz; P = 1,00 Sn; cosφ = 1 Test 2: U = 195,5 V; f = 48,5 Hz; P = 1,00 Sn; cosφ = 1 Test 3: U = 253,0 V; f = 51,5 Hz; P = 1,00 Sn; cosφ = 1 Test 4: U = 230,0 V; f = 50,0 Hz; Voltage Phase jumps Change +20 degrees P = 1,00 Sn; cosφ = 1 Test 5: U = 230,0 V; f = 50,0 to 50,5 Hz;RoCoF=1Hz/s; P = 1,00 Sn; cosφ = 1 						
Test sequence	Voltage [V]		Frequency [Hz]	Output	power [kW]	Co	sφ
Test1	195,59		47,50	2	2,672		985
Test2	195,59		48,50		2,672	0,9	985
Test3 253,19			51,50 3,000		0,9	999	
Test4 230,48			50,00	3,012		0,9	999
Test5	230,08		50,50		3,007	0,9	988

Note:

Test method refer clause D.3.1 of EN 50438:2013.

During the tests the interface protection was disabled.

Operation at reduced power is allowed during test 1, equal to the maximum power that can be supplied on reaching the maximum output current limit ($P \ge 0.85 S_n$).

During the sequence of test 3, automatic adjustment to reduce power in the case of over-frequency was disabled.

The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

3,006

0,197

3,005

0,178

3,004

0,149

3,005

0,169

3,006

0,205

Active power [kW]:

 $\Delta P/P_n$ [%] :

Assessment criterion:

Test method refer clause A.7.3.2 of G99/1-4

The frequency should then be set to 49,5 Hz for 5 minutes. The output should remain at 100% of registered Capacity.

The frequency should then be set to 49,0 Hz and once the output has stabilised, held at this frequency for 5 minutes. The Active Power output must not be below 99% of registered Capacity.

The frequency should then be set to 48,0 Hz and once the output has stabilised, held at this frequency for 5 minutes. The Active Power output must not be below 97% of registered Capacity.

The frequency should then be set to 47,6 Hz and once the output has stabilised, held at this frequency for 5 minutes. The Active Power output must not be below 96.2% of registered Capacity.

The frequency should then be set to 47,1 Hz and held at this frequency for 20s. The Active Power output must not be below 95,0% of registered Capacity and the Synchronous Power Generating Module must not trip in less than the 20s of the test.

Note:

The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

EN 50549-1:2019: Immunity to disturbances						
Clause	Test requirement	Test procedure according standard	Result			
4.5.2	Rate of change of frequency (RoCoF) immunity	G99/1-4:2019, clause A.7.1.2.6	Р			
4.5.3	Low voltage ride through (LVRT)	VDE V 0124-100:2019-02 (Draft), clause 5.8.3.	Р			
4.5.4	High voltage ride through (HVRT)	VDE V 0124-100:2019-02 (Draft), clause 5.8.3.	Р			
4.7.4	Zero current mode for converter connected generating plants	VDE V 0124-100:2019-02 (Draft), clause 5.8.3.	Р			

Ρ

4.5.2 Rate of change of frequency (ROCOF) immunity

	Start Frequency	Change	End Frequency	Confirm no trip
Positive Frequency drift	49Hz	+2Hz/sec	51Hz	No trip
Negative Frequency drift	51Hz	-2Hz/sec	49Hz	No trip

Note:

Test method refer clause A.7.1.2.6 of G99/1-4:2019.

Hold for 10 s

Manufacturers considering new designs should allow for the RoCoF where stability is required to be increased to, up to 2Hz per second, as proposed in the new European network codes, which are expected to come into force over the period 2014/2015. Under these conditions RoCoF will cease to be an effective loss of mains protection and is unlikely to be permitted in future revisions of this document.

For the step change test the SSEG should be operated with a measureable output at the start frequency and then a vector shift should be applied by extending or reducing the time of a single cycle with subsequent cycles returning to the start frequency. The start frequency should then be maintained for a period of at least 10 seconds to complete the test. The SSEG should not trip during this test.

For frequency drift tests the SSEG should be operated with a measureable output at the start frequency and then the frequency changed in a ramp function at 0,95Hz per second to the end frequency. On reaching the end frequency it should be maintained for a period of at least10 seconds. The SSEG should not trip during this test.

The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

4.5.3	Low voltage ride through (LVRT)	Р
4.7.4	Zero current mode for converter connected generating plants	

General:

If the voltage on the generator terminals falls below <0.8 U_n and if the generator terminals exceed the voltage of> 1.15 U_n (start of fault), generator must pass through voltage dips without any current being drawn into the grid Network operator (limited dynamic network support).

This requirement is met if, for a voltage dip below 0.8 U_n or at a voltage increase above 1.15 U_n , the injected current of the generating unit (s) and / or the memory 60 ms after occurrence of this voltage dip in any outer conductor 20% of the rated current I_r and does not exceed> 10% I_r after 100 ms.

After the voltage returned to continuous operating voltage range of -15% U_n to +10% U_n, 90 % of pre fault power or available power whichever is the smallest shall be resumed as fast as possible, but at the latest within 1 s unless the DSO and the responsible party requires another value.

Test	Drop depth	Symmetry	Fault	Output po	Output power level		Test no.
	requirement [p.u. U _n]		duration [ms]	P set point (P _{rE} / p.u.)	Q set point (Q / p.u.)		
1.A.1		Symmetrical		1,0			1.A.1
1.A.2		Symmetrical		0,2			1.A.2
1.D.1	0.05	Asymmetrical	250	1,0	0.00	2	1.D.1
1.D.2	0,05	Asymmetrical	230	0,2	0,00	2	1.D.2
1.B.1		Single phase*		1,0			1.B.1
1.B.2		Single phase		0,2			1.B.2
2.A.1		Symmetrical		1,0			2.A.1
2.A.2		Symmetrical		0,2			2.A.2
2.D.1	0.31	Asymmetrical	1300	1,0	0.00	2	2.D.1
2.D.2	0,51	Asymmetrical	1300	0,2	0,00	2	2.D.2
2.B.1		Single phase*		1,0			2.B.1
2.B.2		Single phase		0,2			2.B.2
3.A.1		Symmetrical		1,0			3.A.1
3.A.2		Symmetrical		0,2			3.A.2
3.D.1	0.85	Asymmetrical	3000	1,0	0.00	2	3.D.1
3.D.2	0,00	Asymmetrical	3000	0,2	0,00	2	3.D.2
3.B.1		Single phase*		1,0			3.B.1
3.B.2		Single phase		0,2			3.B.2
OV1	1,25		100	1,0			OV1
OV2	1,20	Symmetrical	5000	1,0	0,00	2	OV2
OV3	1,15		60000	1,0			OV3

Note:

For every kind of voltage dip a test without load has to be performed in order to prove that the test condition was fulfilled. The voltage has to drop to AT LEAST the defined depth level. An exception can be considered in case no current is supplied during dips.

* Single phase = "choose Typ 7 at BV-Lab Studio" ≙ LVRT Typ B

Graph of FRT test one

Test result:						
List of tests	Residual amplitude of Duration limit [ms] phase-to-phase voltage [p.u. U _n]		Duration [ms]	Result		
P _{Emax} in %		20% ±5%				
1.D.1- Asymmetrical fault phase [Phase 1]	0,05	250 ± 20	251	Pass		
1.D.1- Asymmetrical fault phase [Phase 2]	0,05	250 ± 20	250	Pass		
1.D.1- Asymmetrical fault phase [Phase 3]	0,05	250 ± 20	250	Pass		
2.D.1- Asymmetrical fault phase [Phase 1]	0,31	1300 ± 20	1300	Pass		
2.D.1- Asymmetrical fault phase [Phase 2]	0,31	1300 ± 20	1300	Pass		
2.D.1- Asymmetrical fault phase [Phase 3]	0,31	1300 ± 20	1300	Pass		
3.D.1- Asymmetrical fault phase [Phase 1]	0,85	3000 ± 20	3000	Pass		
3.D.1- Asymmetrical fault phase [Phase 2]	0,85	3000 ± 20	3000	Pass		
3.D.1- Asymmetrical fault phase [Phase 3]	0,85	3000 ± 20	3000	Pass		
P _{Emax} in %		100% ±5%				
1.D.2- Asymmetrical fault phase [Phase 1]	0,05	250 ± 20	250	Pass		
1.D.2- Asymmetrical fault phase [Phase 2]	0,05	250 ± 20	251	Pass		
1.D.2- Asymmetrical fault phase [Phase 3]	0,05	250 ± 20	250	Pass		
2.D.2- Asymmetrical fault phase [Phase 1]	0,31	1300 ± 20	1300	Pass		
2.D.2- Asymmetrical fault phase [Phase 2]	0,31	1300 ± 20	1300	Pass		
2.D.2- Asymmetrical fault phase [Phase 3]	0,31	1300 ± 20	1300	Pass		
3.D.2- Asymmetrical fault phase [Phase 1]	0,85	3000 ± 20	3000	Pass		
3.D.2- Asymmetrical fault phase [Phase 2]	0,85	3000 ± 20	3000	Pass		
3.D.2- Asymmetrical fault phase [Phase 3]	0,85	3000 ± 20	3000	Pass		
OV1- Symmetrical fault phase	1,25	100 ± 20	101	Pass		
OV2- Symmetrical fault phase	1,20	5000 ± 20	5000	Pass		
OV3- Symmetrical fault phase	1,15	60000 ± 20	60000	Pass		

Copyright © Bureau Veritas Consumer Products Services Germany GmbH This report must not be reproduced in part or in full without the written approval of the issuing testing laboratory.

Graph of FRT test one

Test result:				
List of tests	Residual amplitude of phase-to-phase voltage [p.u. U _n]	Duration limit [ms]	Duration [ms]	Result
Test conditions:				
Voltage simulator fall and rise	e time: < 20ms			
Used sample rate: 10 kHz				
Note:				
The test method refer to VDE	: V 0124-100:2019-02 (Draft), cla	use 5.8.3.		
The test had been performed ASW1500S-S, ASW2000S-S	on the model ASW3000S-S, the since it is identical in hardware a	test results are valid for and software.	the ASW1000)S-S,

Test 1: 1.D.1- Asymmetrical fault phase [Phase 2]; P = 20% ±5% Pn

EN 50549-1:2019: Active response to frequency deviation						
Clause	Test requirement	Test procedure according standard	Result			
4.6.1	Power response to over-frequency	VDE V 0124-100:2019-02 (Draft), clause 5.4.4	Р			
4.6.2	Power response to under-frequency	VDE V 0124-100:2019-02 (Draft), clause 5.4.6	N/A			

.6.1 Power response to over-frequency							
Test result:							
1-min mean value [Hz]:	a) 50,00	b) 50,25	c) 50,70	d) 51,40	e) 50,70	f) 50,25	g) 50,00
1. Measurement a) to g): A	ctive power	output =100	% P _{Emax}	- / - / -	-,, -	, , -	3,,
s=5% (40% P _{ref} / Hz), thres	hold frequer	ncy for start/	return: 50,2l	Hz	Γ		
Frequency [Hz]:	50,00	50,25	50,70	51,40	50,70	50,25	50,00
Р _м [kW]:	N/A	2,946	2,404	1,562	2,404	2,946	N/A
P _{E60} [kW]:	3,006	2,949	2,391	1,561	2,391	2,949	3,007
ΔР <i>Е</i> 60/Рм [%]:	N/A	0,11	-0,46	-0,06	-0,46	0,12	N/A
Test result:	-) 50.00	h) 50.05	-) 50 70	-1) 54 40	-) 50 70	£) 50.05	
1-min mean value [Hz]:	a) 50,00	D) 50,25	C) 50,70	a) 51,40 a = 100% B	e) 50,70	1) 50,25	g) 50,00
$s=5\%$ (40% P_{ref} / Hz), thres	shold frequer	ncy for start/	return: 50,21	g = 100 % Fi Hz	-max		
Frequency [Hz]:	50,00	50,25	50,70	51,40	50,70	50,25	50,00
Р _м [kW]:	N/A	1,736	1,417	0,922	1,417	1,736	N/A
P _{<i>E</i>60} [kW]:	1,808	1,771	1,433	0,942	1,432	1,772	3,008
ΔΡ <i>Ε</i> 60/Ρ _Μ [%]:	N/A	1,18	0,54	0,65	0,50	1,21	N/A
Limit ΔP/P _{1min} :			±	10 % of P _{Err}	nax		
Graph of Measurement 1.	: Active pov	wer output :	> 80% P _{Emax}	¢			
F1 60						2500	00
51.00						3500.	00
51.40						3000.	00
51.20			+				
51.00			1 =			- 2500.	00
50.80						2000.	.00
50.80		·····	┶───				
50.60						- 1500.	00
50.40		_					00
50.20							00
50.00						- 500.0	0
10.00						0.00	
49.80 + 0	100	200	300	400	500	+ 0.00 600	
			Time(s)				
		DD111	D. // . //		line to David		
	F[Hz]		P_limit	(lw) — F	_limit[W]		

Test:

The test is conducted for two powers. First, the test must start at a power =100% P_{Emax} ("Measurement 1"), and in a second test, for a power 60% P_{Emax} ("Measurement 2"). In the second test, after freezing of the P_M , the available active power output must be increased to a value =100% P_{Emax} , and after the network frequency of 50,2 Hz is fallen below, the rise of the active power gradient must be recorded.

Point g) must be held until the micro-generator is again feeding in with the active power output available.

Assessment criterion:

For f = 50,2 Hz, the value of the P_M active power currently being generated is "frozen".

a) For adjustable micro-generators when:

1) the active power reduces between measuring points b) and f) given above with the set gradient P_M per Hz for a increasing frequency (or rises for a frequency decreasing again).

2) the maximum active power gradient occurring in point is less than the configured maximum active power per minute

3) the reaction value of the setpoint determined by the gradient characteristic curve does not differ from P_{Emax} by more than ± 10%.

4) the settling time is equal or below 2 s with an intentional delay set to zero

b) For partly adjustable micro-generators

1) when they behave as in a) within their adjustment range, and

2) when, outside the adjustable range, the power fed in on leaving the adjustment range remains constant until shutdown. Shutdown must be no later than at 51,5 Hz.

Note:

The test method refer to clause 5.4.4 of VDE V 0124-100:2019-02 (Draft).

EN 50549-1:2019: Power response to voltage variations and voltage changes

Clause	Test requirement	Test procedure according standard	Result
4.7.2.2	Capabilities		Р
4.7.2.3.2	Fix control modes (cos φ setpoint mode)	FGW TG3, Revision 25, clause 4.2.2	Р
4.7.2.3.2	Fix control modes (<u>Q setpoint mode,</u> <u>48,43%)</u>	EN 50438:2013, Annex D.3.4.2.1	Р
4.7.2.2	Q Response time	CEI 0-21:2019-04, Annex B.1.2.4	Р
4.7.2.3.3	Voltage related control modes (Q (U) controls)	VDE AR 4105:2018-05, clause 5.7.2.4.	Р
4.7.2.3.4	Power related control modes (cos ϕ (P) curve)	VDE V 0124-100:2012, clause 5.3.6.4	Р
4.7.3	Voltage related active power reduction (P(U) function)	CEI 0-21:2019-04, Annex B.1.3.1	Р

4.7.2 Voltage support by reactive power									
4.7.2.2	.7.2.2 Capabilities								
4.7.2.3.2	.7.2.3.2 Fix control modes (cos φ setpoint mode)								
Test result:									
		PF = 0,8 / I	nducitive reactive po	wer supply	1				
Rating pow [%]	er	Active power [kW]	Reactive power [kVar]	Power factor [cos φ]	Volt [\	age /]			
5%		0,148	-0,108	0,8074	229	,60			
10%		0,284	-0,212	0,8009	229	,74			
20%		0,589	-0,429	0,8082	229	,90			
30%		0,890	-0,658	0,8042	229),71			
40%		1,193	-0,886	0,8027	229	,42			
50%		1,491	-1,111	0,8018	229	,59			
60%		1,790	-1,336	0,8014	229),77			
70%		2,087	-1,561	0,8007	229	,51			
80%		2,382	-1,784	0,8003	229	,69			
90% 2,403 -1,813 0,7982		230),10						
100% 2,398 -1,814 0,7974				230),10				
		PF = 0,8 / C	apacitive reactive po	wer supply					
Rating pow [%]	er	Active power [kW]	Reactive power [kVar]	Power factor [cos φ]	Volt 	age /]			
5%		0,148	0,114	0,7927	229	,58			
10%		0,301	0,231	0,7932	229	,70			
20%		0,593	0,456	0,7923	229	,86			
30%		0,897	0,682	0,7962	230	,04			
40%		1,199	0,907	0,7975	230	,23			
50%		1,499	1,132	0,7981	230	,46			
60%		1,798	1,355	0,7987	230	,66			
70%		2,096	1,576	0,7992	230	,56			
80%		2,392	1,796	0,7996	230	,47			
90%		2,415	1,823	0,7980	229	,44			
100%		2,411	1,822	0,7977	229	,42			

Cos phi=1 no reactive power supply								
Rating power [%]	Active power [kW]	Reactive power [kVar]	Power factor [cos φ]	Voltage [V]				
5%	0,148	0,011	0,9971	229,56				
10%	0,288	0,018	0,9980	229,71				
20%	0,594	0,021	0,9994	229,45				
30%	0,901	0,020	0,9998	229,62				
40%	1,206	0,019	0,9999	229,80				
50%	1,509	0,018	0,9999	229,51				
60%	1,812	0,017	0,9999	229,69				
70%	2,114	0,016	0,9999	229,86				
80%	2,415	0,015	0,9999	229,42				
90%	2,711	0,014	0,9999	229,56				
100%	3,010	0,012	0,9999	229,74				

Assessment criterion:

The power factor resulting in each of the measurement points between 20 % and 90 % of the nominal power is equal to or lower than 0,90 both in over excited and under excited operation.

 4.7.2 Voltage support by reactive power 4.7.2.2 Capabilities 4.7.2.3.2 Fix control modes (Q setpoint mode, 48,43%) 							
Test result:							
		Induc	itive reactive power	supply			
Rating pov	ver	Active power [kW]	Reactive power [kVar]	Power factor [cos φ]	Volt [\	:age /]	
5%		0,156	-1,816	0,0859	229	9,63	
10%		0,293	-1,807	0,1598	229	9,70	
20%		0,556	-1,832	0,2904	229),44	
30%		0,863	-1,830	0,4265	229	9,63	
40%		1,171	-1,830	0,5389	229),21	
50%		1,478	-1,811	0,6320	229),39	
60%		1,780	-1,812	0,7007	230),02	
70%		2,083	-1,812	0,7544	230),21	
80%		2,384	-1,812	0,7961	230),39	
90%		2,403	-1,815	0,7979	230),41	
100%		2,397	-1,815	0,7971	230),35	
		Сарас	citive reactive power	supply			
Rating pov [%]	ver	Active power [kW]	Reactive power [kVar]	Power factor [cos φ]	Voli [\	age /]	
5%	0,154 1,818 0,0841		229	229,16			
10%		0,298	1,827	0,1607	229,09		
20%		0,586	1,820	0,3072	229,48		
30%		0,869	1,821	0,4303	229,72		
40%		1,176	1,819	0,5429	230),05	
50%		1,481	1,831	0,6289	230),42	
60%		1,786	1,831	0,6982	230),61	
70%		2,093	1,828	0,7531	230),14	
80%		2,389	1,829	0,7940	230),97	
90%		2,415	1,823	0,7980	230),99	
100%		2,410	1,823	0,7975	230),99	
		Cos ph	i=1 no reactive powe	r supply			
Rating pov [%]	ver	Active power [kW]	Reactive power [kVar]	Power factor [cos φ]	ioV \]	∷age ∕]	
5%		0,148	0,011	0,9971	229	9,56	
10%		0,288	0,018	0,9980	229	9,71	
20%		0,594	0,021	0,9994	229	9,45	
30%		0,901	0,020	0,9998	229	9,62	
40%		1,206	0,019	0,9999	229	9,80	
50%		1,509	0,018	0,9999	229	9,51	
60%		1,812	0,017	0,9999	229	9,69	
70%		2,114	0,016	0,9999	229	9,86	
80%		2,415	0,015	0,9999	229	9,42	
90%		2,711	0,014	0,9999	229	9,56	
100%		3.010	0.012	0.9999	229).74	

Copyright © Bureau Veritas Consumer Products Services Germany GmbH This report must not be reproduced in part or in full without the written approval of the issuing testing laboratory.

Assessment criterion:

The power factor resulting in each of the measurement points between 20 % and 90 % of the nominal power is equal to or lower than 0,90 both in over excited and under excited operation,

The test method refer to clause CEI0-21 / EN 50438:2013, Annex D,3,4,2,1,

Generating plants must meet the reactive power requirement regardless of the number of feeding phases under normal steady-state operating conditions in the voltage tolerance band $+10\%U_n$ and $-15\%U_n$.

Reaction time Time Result Image: Colspan="2">Time Result Image: Colspan="2">Reaction time Qmin (50% test) 3.2s P Image: Colspan="2">Reaction time Qmin to Qmax (50% test) 3.2s P Image: Colspan="2">Reaction time Qmin to Qmax (50% test) 7.6 s P Image: Colspan="2">Reaction time Qmax to Q=0 (50% test) 4.4.0 s P Image: Colspan="2">Reaction time Qmax to Q=0 (100% test) 5.4 s P Image: Colspan="2">Reaction time Qmax to Q=0 (100% test) 8.4 s P Test result: Caraph 50%Pn Test result: Graph 50%Pn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <th colspa="</th"><th>4.7.2.</th><th>2 Capabilities Q Response time</th><th>Ρ</th></th>	<th>4.7.2.</th> <th>2 Capabilities Q Response time</th> <th>Ρ</th>	4.7.2.	2 Capabilities Q Response time	Ρ
Test result: Time Result 1. Reaction time Q=0 to Qmin (50% test) 3,2s P 2. Reaction time Qmin to Qmax (50% test) 7,6 s P 3. Reaction time Qmax to Q=0 (50% test) 4,0 s P 4. Reaction time Q=0 to Qmin (100% test) 5,4 s P 5. Reaction time Qmin to Qmax (100% test) 8,4 s P 6. Reaction time Qmax to Q=0 (100% test) 4,0 s P Test result:		Reaction time		
Image: construction Time Result 1. Reaction time Q=0 to Qmin (50% test) 3.2 s P 2. Reaction time Qmin to Qmax (50% test) 7.6 s P 3. Reaction time Qmax to Q=0 (50% test) 4.0 s P 4. Reaction time Q=0 to Qmin (100% test) 5.4 s P 5. Reaction time Qmax to Q=0 (100% test) 8.4 s P 6. Reaction time Qmax to Q=0 (100% test) 4.0 s P Test====================================	Test	result:		
1. Reaction time Q=0 to Qmin (50% test) 3,2s P 2. Reaction time Qmin to Qmax (50% test) 7,6 s P 3. Reaction time Qmax to Q=0 (50% test) 4,0 s P 4. Reaction time Qmin to Qmax (100% test) 5,4 s P 5. Reaction time Qmin to Qmax (100% test) 8,4 s P 6. Reaction time Qmax to Q=0 (100% test) 4,0 s P Test result:		Time	Result	
2. Reaction time Qmin to Qmax (50% test) 7,6 s P 3. Reaction time Qmax to Q=0 (50% test) 4,0 s P 4. Reaction time Q=0 to Qmin (100% test) 5,4 s P 5. Reaction time Qmax to Q=0 (100% test) 8,4 s P 6. Reaction time Qmax to Q=0 (100% test) 4,0 s P Test result:	1.	Reaction time Q=0 to Qmin (50% test)3,2s	Р	
3. Reaction time Qmax to Q=0 (50% test) 4,0 s P 4. Reaction time Qmin to Qmax (100% test) 5,4 s P 5. Reaction time Qmin to Qmax (100% test) 8,4 s P 6. Reaction time Qmax to Q=0 (100% test) 4,0 s P Test result: Total colspan="3">Caraph 50%Pn 100.00 80.00 60.00 60.00 40.00	2.	Reaction time Qmin to Qmax (50% test)7,6 s	Р	
4. Reaction time Q=0 to Qmin (100% test) 5,4 s P 5. Reaction time Qmin to Qmax (100% test) 8,4 s P 6. Reaction time Qmax to Q=0 (100% test) 4,0 s P Test result	3.	Reaction time Qmax to Q=0 (50% test)4,0 s	Р	
5. Reaction time Qmin to Qmax (100% test) 8,4 s P 6. Reaction time Qmax to Q=0 (100% test) 4,0 s P Test result: Graph 50%Pn 100.00 80.00 60.00 40.00 20.00 60.00 60.00 20.00 0.00 60.00 60.00 -20.00 -40.00 -40.00 -40.00 -80.00 -100.00 50 100 150 200 250 300 350 400 450 500	4.	Reaction time Q=0 to Qmin (100% test) 5,4 s	Р	
6. Reaction time Qmax to Q=0 (100% test) 4,0 s P Test result: Graph 50%Pn 100.00 80.00 60.00	5.	Reaction time Qmin to Qmax (100% test)8,4 s	Р	
Graph 50%Pn 100.00 80.00 60.00 60.00 40.00 60.00 20.00 60.00 -20.00 -40.00 -80.00 -100.00 -50 100 150 200 250 300 350 400 450 500 Time(s)	6.	Reaction time Qmax to Q=0 (100% test)4,0 s	Р	
Graph 50%Pn	Test	esult:		
Q/Pn[%]Q/Pn_setting[%]Q/Pn_limit[%]Q/Pn_limit[%]		100.00 80.00 60.00 40.00 20.00 -20.00 -20.00 -40.00 -0.000 -0.0		

DC source should be set to 50%(test1) and 100%(test2) output power micro-generator.

Starting with Q=0 then Qmin≤ -0,4843 Pn to to Qmax≥ 0,4843 Pn, and then back to Q=0 in doing so each

point must be kept for at least 2 minute.

The total tolerance is $\Delta Q \le \pm 5,0\%$ of Pn or $\Delta \cos \varphi \le \pm 0,01$

The maximum response time is 10s.

4.7.2.2 Capabilities

4.7.2.3.3 Voltage related control modes (Q (U) controls)

The validation of the Q (U) regulation according to VDE-AR-N 4105: 2018-05, 5.7.2.4 is divided into two partial tests, so that on the one hand the accuracy and on the other hand the dynamics of the Q (U) control is checked. For all inverter-coupled systems, only the inverter must be tested.

Ρ

Test result:							
Test of the react	ive power-voltage	characteristic Q	(U)		Р		
Vac [% U _n] Set point	Vac_L1 [V] measured	P [kW] measured	Q [kVar] measured	Q [kVar] expected	ΔQ [% P _{Emax}]		
100	230,12	3,004	0,013	0,000	0,426		
99	227,75	3,003	0,012	0,000	0,389		
98	225,69	3,002	0,010	0,000	0,348		
97	223,18	3,001	0,011	0,000	0,373		
96	220,60	2,999	0,433	0,450	-0,568		
95	218,44	2,890	0,865	0,900	-1,173		
94	216,01	2,681	1,342	1,350	-0,261		
93	213,74	2,382	1,797	1,800	-0,112		
92	211,47	2,326	1,821	1,800	0,684		
91	209,39	2,289	1,823	1,800	0,770		
90	207,07	2,249	1,822	1,800	0,730		
91	209,38	2,288	1,823	1,800	0,774		
92	211,63	2,329	1,821	1,800	0,691		
93	213,74	2,383	1,796	1,800	-0,133		
94	216,00	2,682	1,340	1,350	-0,333		
95	218,36	2,887	0,875	0,900	-0,828		
96	220,59	2,999	0,433	0,450	-0,579		
97	223,17	3,001	0,011	0,000	0,381		
98	225,69	3,002	0,010	0,000	0,348		
99	227,76	3,005	0,011	0,000	0,377		
100	230,14	3,004	0,014	0,000	0,458		
101	232,26	3,008	0,013	0,000	0,439		
102	234,63	3,009	0,012	0,000	0,414		
103	236,92	3,010	-0,044	0,000	-1,479		
104	238,99	3,001	-0,453	-0,450	-0,095		
105	241,33	2,882	-0,914	-0,900	-0,454		
106	243,60	2,690	-1,364	-1,350	-0,453		
107	246,11	2,407	-1,809	-1,800	-0,315		
108	248,34	2,408	-1,809	-1,800	-0,309		

Copyright © Bureau Veritas Consumer Products Services Germany GmbH

This report must not be reproduced in part or in full without the written approval of the issuing testing laboratory.

Page 46 of 105

Report No.: 20TH0200-EN50549-1_0

109	250,72	2,410	-1,809	-1,800	-0,290
110	253,10	2,411	-1,809	-1,800	-0,289
109	250,73	2,409	-1,808	-1,800	-0,282
108	248,36	2,408	-1,809	-1,800	-0,289
107	246,13	2,407	-1,810	-1,800	-0,319
106	243,62	2,689	-1,365	-1,350	-0,511
105	241,35	2,879	-0,922	-0,900	-0,736
104	239,01	3,000	-0,455	-0,450	-0,172
103	236,94	3,010	-0,057	0,000	-1,891
102	234,64	3,009	0,014	0,000	0,464
101	232,27	3,007	0,013	0,000	0,423
100	230,20	3,006	0,013	0,000	0,433
Limit ∆Q:			± 4% P _{Emax}		

Test:

The verification of the accuracy of the Q (U) control of the reactive power-voltage characteristic Un shown in VDE-AR-N 4105: 2018-11, 5.7.2.4, Figure 7 is effected by a slow variation of the line voltage U_n in the range 90% U_n to 110% U_n . Depending on the type of EZE (single- or three-phase), the voltage changes must be carried out simultaneously or symmetrically on all phases.

a) In order to check the stationary accuracy, the permissible voltage range shall be passed through within steps, with a step size of $1\% U_n$, but not greater than $2\% U_n$.

- 1. Pass the voltage range from 100% U_n down to the under voltage range to 90% U_n .
- 2. Pass the voltage range from 90% U_n up to the over voltage range to 110% U_n .
- 3. Pass the voltage range from 110% U_n down to the Nominal Voltage U_n .

The procedure is analogous to Figure 3 in Section 5.4.3.2.

The voltages are to be set with a maximum deviation of 0.25% Un.

Assessment criterion:

In order to pass the Q (U) accuracy test, the measured stationary value pairs U_{PGU} and Q_{PGU} , under taking account to the correct sign in the consumer metering system, must be within VDE-AR-N 4105: 2018-11, in 5.7.2.4, Figure 7 Q (U) shown characteristic. The stationary value pairs U_{PGU} and Q_{PGU} are determined by averaging over 30 seconds at the end of the respective measuring section analogously to Chapter 5.4.3.2. The permissible deviations are with the maximum measuring error of the voltage of 1% U_n stated in VDE-AR-N 4105: 2018-11 and a setting accuracy of 4% P_{EMax} at

$$Q_{EZE,tol} = \pm (0.01 \cdot U_{N,Y} \cdot k_{QU} + 0.04 \cdot P_{EMax}) = \pm 0.25 \cdot P_{EMax} \cdot (\sin(\arccos(\varphi_{min})) + 0.16).$$

Test of the dynamics of the Q (U) regulation								
Voltage jump Vac [% Un]	Q [kVar] measured	Q [%Qmax] measured	T=31meas	sured				
	-1,536	-85,35	6,6 s					
100 to 106,4	-1,536	-85,35	6,8 s					
	-1,538	-85,42	6,6 s					
	1,519	84,37	7,8 s					
100 to 93,6	1,520	84,45	7,8 s					
	1,517	84,30	7,8 s					

Note:

 4.7.2.2 Capabilities 4.7.2.3.4 Power related Control mode (cos φ (P) curve) 									Р		
Test result:										l l	
Test a):											
P _{Emax} /P [%]	10	20	30		40	50	60	70	80	90	100
30 s mean value	20% to	100% P _E	max								
U [V]:	N/A	229,52	229,71	22	29,90	230,10	230,31	230,49	230,69	230,88	230,88
P _{E30} [kW]:	N/A	0,594	0,900	1,	,205	1,508	1,833	2,109	2,405	2,702	2,762
PE30 of PEmax [%]:	N/A	19,80	30,00	4(0,17	50,27	61,10	70,28	80,17	90,06	92,08
Q _{E30} [kVAr]:	N/A	0,021	0,020	0,	,019	0,018	-0,356	-0,593	-0,850	-1,125	-1,203
cos φ _{E30} :	N/A	0,9994	0,9997	0,9	9999	0,9999	0,9814	0,9627	0,9429	0,9231	0,9168
$\cos \phi_{\text{setpoint}}$ of P _{E30} :	N/A	1,000	1,000	1,	,000	1,000	0,980	0,960	0,940	0,920	0,920
Limit cos φ _{E30} :						cos φ _{setp}	oint ± 0,01				
Test b):											
P _{Emax} /P _n [%]		20				5	60			100	
30 s mean value	20% to	50% to 1	00% Pem	nax							
U [V]:		230,32	2			230),88			231,54	
P _{E30} [kW]:		0,599				1,5	512			2,763	
P _{E30} of P _{Emax} [%]:		19,97	1			50	,42			92,09	
Q _{E30} [kVAr]:		0,022				0,0)19			-1,203	
cos φ _{E30} :		0,9993	3			0,9	999			0,9168	
cos ϕ_{setpoint} of P _{E30} :		1,000				1,0	000			0,920	
T₀[s]:			<1,0s						4,4s		
P _{Emax} /P _n [%]		100				5	0			20	
30 s mean value					100%	% to 50%	to 20%	P _{Emax}			
U [V]:		231,09	Ð			230),29			229,74	
P _{E30} [kW]:		2,762				1,5	511			0,598	
P _{E30} [%]:		92,08 50,35 19,94									
Q _{E30} [kVAr]:		-1,204	ŀ			0,0)18			0,021	
cos φ _{E30} :		0,9167	7			0,9	999			0,9994	
cos ϕ_{setpoint} of P _{E30} :		0,920				1,0	000			1,000	
T ₀ [s]:			5,4s						<1,0s		
Limit T ₀ [s]:						1() s				
Limit cos φ _{E30} :		$\cos \varphi$ cos φ _{setpoint} ± 0,02									

Test:

- Test 1: Using the standard characteristic curve increases the active power from 20% P_{Emax} in increments of 10% P_{Emax} to P_{Emax}, The test is carried out in reverse.
- Test 2: Using the standard characteristic curve increases the active power from 20% P_{Emax} to 50% P_{Emax} and to P_{Emax}, The test is carried out in reverse, After the PGU has settled, the end value reached is determined as a 30 s mean value.

Characteristic curve $\cos \varphi(P)$

Assessment criterion:

Test 1: $\cos \varphi$ accuracy $\cos \varphi$ (±0,01)

Test 2: $\cos \phi$ accuracy $\cos \phi$ (±0,02)

For the test to be passed, the $\cos \varphi$ setpoint from the active power must be measured at the terminals of the PGU within a settling time of 10 s.

Note:

The test method refer to clause 5,3,6,4 of VDE V 0124-100:2012-07.

4.7.3 V	oltag	e related ac	tive pov	ver reduc	tion (P(U	l) functio	n)			Ρ
Test result:										
Test:										
5-min mean value Pn [%]	e / P/				10	00% to 20	%			
Sottling time [c]:						60				
						19.7				
$\frac{1}{260} [70].$					20 %	or less of	PEmax			
Limit settling tin	ne:				20 /0	600s	• Linax			
Test:		I								
a) Set the voltage	e to 2%	% Vn lower th	nan the a	activation	threshold	stated by	the man	ufacturer		
b) Set the voltage within 5min.	e to 11	2%Vn, The i	inverter	now has t	o reduce	its output	power to	value lov	ver than 2	0%Pn
c) Set the voltage the value consiste	e back ent wi	to 2%Vn low th the power	ver than availabl	the activation the from the	ation thres e primary	shold, Che source or	eck that th simulate	ne active d.	power will	return to
The test had been ASW1500S-S, AS	n perf SW20	ormed on the 00S-S since	e model . it is ider	ASW1000 ntical in ha	OS-S, the ardware a	test resul nd softwa	ts are vali ire.	d for the	ASW3000)S-S,
Assessment crit	erion									
for adjustable PG	US: ork di	sconnection								
- the activ	/e pov	ver value doe	es not ex	xceed the	setpoint o	of 20% P _f	max			
- the setti	ng tim	ne determind	is equal	l or less th	, nan 600s					
				G	iraph:					
270.	00 —								3500	
265.0	00 -								2000	
260				121s					3000	
200.	00					-			- 2500	
255.	00 +								- 2000	
250.0	00 -									
245.	00 -					_			- 1500	
240.	00 -								- 1000	
235.0	00			b					- 500	
220	00			127s						
230.1	00	50	100	150	200 Time(s)	250	300	350	- 0	
				—	V] — P['	W]				

Copyright © Bureau Veritas Consumer Products Services Germany GmbH This report must not be reproduced in part or in full without the written approval of the issuing testing laboratory.

EN 50549-1:2019: Power quality						
Clause	Test requirement	Test procedure according standard	Result			
4,8	EMC and power quality		Р			
	Harmonic current emission	EN 61000-3-2, EN 61000-3-12	Р			
	Harmonic current emission	EN 61000-4-7	N/A			
	Switching operations	IEC 61400-21	Р			
	Voltage fluctuation and flicker	EN 61000-3-3, EN 61000-3-11	Р			
	Flicker and voltage fluctuations	IEC 61400-21	Р			
	DC injection	EN 50438, Annex D,3,10	Р			
	Immunity to voltage dips and short interruptions	G59/3-4:2018-05, clause 13.8.4.5	Р			
	Unbalance	BDEW TG3, Revision 25, clause 4.3.5	N/A			

4.8	EMC and power quality Harmonic current emission	(EN 61000-3-2)	,		Р
Test result:					
	Watts [kW]			3,005	
	Vrms [V]			230.34	
	Arms [A]			13 057	
				50,000	
	THD40* (100% output power)			2 098	
				2,000	Harmonic
Harmonic order n	Current Magnitude [A] at 100% rated output power	% of Fundamental		Phase	Current Limits [A]
1st	13,023	100	000	Single-phase	-
2nd	0,074	0,7	22	Single-phase	1,080
3rd	0,078	0,6	60	Single-phase	2,300
4th	0,016	0,1	61	Single-phase	0,430
5th	0,072	0,5	579	Single-phase	1,140
6th	0,010	0,1	04	Single-phase	0,300
7th	0,017	0,1	54	Single-phase	0,770
8th	0,008	0,0	82	Single-phase	0,230
9th	0,083	0,6	52	Single-phase	0,400
10th	0,008	0,0	74	Single-phase	0,184
11th	0,070	0,5	51	Single-phase	0,330
12th	0,008	0,0	70	Single-phase	0,153
13th	0,055	0,4	33	Single-phase	0,210
14th	0,007	0,0	66	Single-phase	0,131
15th	0,043	0,3	37	Single-phase	0,150
16th	0,007	0,0	62	Single-phase	0,115
17th	0,028	0,2	19 50	Single-phase	0,132
180	0,007	0,0	109	Single-phase	0,102
19th	0,018	0,1	43	Single phase	0,118
2011 21th	0,007	0,0	10	Single-phase	0,092
21111 22th	0,013	0,1	10	Single phase	0,107
22111 22th	0,009	0,0	10	Single phase	0,004
2311 24th	0,015	0,1	19	Single phase	0,098
2411 25th	0,009	0,0	86	Single-phase	0,077
25th	0.007	0,0	57	Single-phase	0,090
20th	0,007	0,0	77	Single-phase	0,071
28th	0,000	0,0	53	Single-phase	0,000
20th	0.010	0,0	78	Single-phase	0,000
30th	0.007	0,0	55	Single-phase	0.061
31th	0.009	0,0	76	Single-phase	0.073
32th	0.007	0,0	58	Single-phase	0.058
33th	0.009	0,0	75	Single-phase	0.680
34th	0.007	0.0	57	Single-phase	0.054
35th	0,009	0.0	72	Single-phase	0,064
36th	0,008	0.0	65	Single-phase	0.051
37th	0,011	0.0	86	Single-phase	0,061
38th	0,010	0.0	82	Single-phase	0,048
39th	0,013	0,1	03	Single-phase	0,058
40th	0,008	0,0	64	Single-phase	0,046

Note:

The tests should be based on the limits of the EN61000-3-2 for less than 16A and on EN 61000-3-12 for more than 16A.

4.8 EMC and power quality Switching operation (Refer IEC 61400-21)							
Test result:							
Max. number of switching operations, N_{10} 10							
Max. number of switching operations, N120		1:	20				
Case of switching operation		Cut-in at	9%P _{Emax}				
Grid impedance angle, ψ_k	30°	50°	70°	85°			
Flicker step factor, k _f (ψ _k)	0,061	0,039	0,032	0,030			
Voltage change factor, $k_u(\psi_k)$	1,519	1,553	1,581	1,505			
Maximum inrush current factor kimax		0,0)74				
Case of switching operation		Cut-in at 1	00%P _{Emax}				
Grid impedance angle, ψ_k	30°	50°	70°	85°			
Flicker step factor, k _f (ψ _k)	0,341	0,222	0,181	0,170			
Voltage change factor, $k_u(\psi_k)$	4,125	4,087	4,163	4,111			
Maximum inrush current factor kimax		0,5	571				
Case of switching operation	Ser	vice disconnec	tion at rated pow	/er			
Grid impedance angle, ψ_k	30°	50°	70°	85°			
Flicker step factor, k _f (ψ _k)	0,685	0,443	0,359	0,339			
Voltage change factor, k _u (ψ _k)	4,353	4,511	4,411	4,334			
Maximum inrush current factor kimax		0,5	569				
Worst case over all switching operations, k_{imax}		0,5	571				
Note: S _{k,fic} /S _n in the fictitious grid was set to: 63.							

4.8 Voltage fluctuation and flicker									
Test result:									
Test conditions: Maximum permissible voltage fluctuation (expressed as a percentage of nominal voltage at 100 % power) and flicker as per EN 61000-3-3 and/or EN 61000-3-11.						of I/or EN			
Test:									
Value	P _{st}	P _{lt} 2 hours	d(t) _{500ms}	d _c		d _{max}			
Limit	1,0	0,65	3,3%	3,3%		4%			
Test value			See below						
		inverter <16A							
		L1 phase							
No. 1 2 3 4 5 6 7 7 8 9 10 11	dc[%] 0.04 0.00 0.06 0.00 0.11 0.13 0.26 0.19 0.13 0.23 0.17 0.12	dmax[%] 0.10 0.00 0.62 0.00 0.13 0.21 0.21 0.27 0.25 0.33 0.26 0.21	d(t)[ms] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Pst 0.07 0.07 0.22 0.07 0.07 0.08 0.09 0.08 0.09 0.08 0.09 0.08 0.09					
				Plt 0.11					

Note:

*The stationary deviance of dc% is more relevant than the dynamic deviance of dmax at starting and stopping, Mains Impedance according EN61000-3-11:

Rmax = 0,24 Ω ; jXmax= 0,15 Ω @50Hz (|Zmax| = 0,283/0,4717 Ω) for single phase inverter use also R_n = 0,16 Ω ; jX_n= 0,1 Ω .

Calculation of the maximum permissible grid impedance at the point of common coupling based on dc:

$Z_{max} = Z_{ref} * 3,3\% / d_c(P_n).$

The tests should be based on the limits of the EN 61000-3-3 for less than 16A and on EN 61000-3-11 for more than 16A.

4.8 EMC and power quality Flicker and voltage fluctuations											Р
Method: Measurement and evaluation was carried out according to the procedure in IEC 61400-21.											
Test result:											
Grid impedance a	ngle, ψ _k		3	30°		50°		70°		85°	
Operating point, P	a/P _{Emax} [%]			Flicker coefficient, c(ψ _k)							
0			4,	290		2,800		2,283		2,15	53
10			4,	290		2,800		2,283		2,15	53
20			4,	290		2,800		2,283		2,153	
30			4,	290		2,800		2,283		2,153	
40			4,290			2,800		2,283		2,153	
50			4,290			2,800		2,283		2,153	
60		4,	290		2,800		2,283		2,153		
70			4,	290		2,800		2,283		2,15	53
80			4,	290		2,800		2,283		2,15	53
90			4,	290		2,800		2,283		2,153	
100			4,290			2,800		2,283		2,153	
Max. Flicker coeffi	cient, c(ψk)		4,290			2,800		2,283		2,153	
Max. Short-term fl	cker, Pst		0,068			0,044		0,036		0,034	
Reactive power setpoint during testing								0			
P [%P _{Emax}]	0	10	20	30	40	50	60	70	80	90	100
Number of data se	ets 1	1	1	1	1	1	1	1	1	1	1

Note:

The table entries are worst case values.

 $S_{k,fic}/S_n$ in the fictitious grid was set to: 63.

4.8 EMC and power quality DC-Injection							
Test result:							
Protection limit	Tested at four power levels limit 0,5% of I _{AC;nom} (65mA)						
Output power	~20%	~50%	70%	~	100%		
Max. test value [mA]	13,5	16,6	20,0		34,2		
Note:							

Test method and setting value refer Annex D.3.10 of EN 50438:2013.

Testing must be performed according to WI 10.4.-03.doc rev D. The internal temperature of the EUT must be stabilized, No temperature drift of more than 2K within 1 hour is allowed.

* Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot.

EN 50549-1:2019: Interface protection							
Clause	Test requirement	Test procedure according standard	Result				
4.9.3	Requirements on voltage and frequency protection	CEI 0-21:2019-04, Annex A.3.1 to A.3.4	Р				
4,9,3,1	Undervoltage protection	EN 50438, Annex D.2.3	Р				
	Overvoltage protection	EN 50438, Annex D.2.3	Р				
	Overvoltage 10 min mean protection	EN 50160	Р				
	Underfrequency protection	EN 50438, Annex D.2.4	Р				
	Overfrequency protection	EN 50438, Annex D.2.4	Р				
4.9.4.2	Loss of Mains (LoM) detection	IEC 62116:2014	Р				

4.9.3	Requirements on voltage and frequency protection Checklist								Ρ
Several points to check									
Clause 4.9.3.1 to 4.9.3.6	All thresholds must be adjustable								Р
Voltage values									
Threshold		Stage 2	1 [27 <]			Stage 2	[27 <<]		
THESHOL	Operate volt	tage	Op	perate time	Operate volt	age	Op	perate	; time
Range	0,2-1,0 U	n		0,1-100s	0,2-1,0 U	n		0,1-	ōs
Steps	0,01 U _n			0,1 s	0,01 Un			0,05	is
Thrashold	Stage 1 [59 >			Stage 2	2 [59 >>] Over		rvoltage 10 min mean protection		n mean
Inreshold	Operate voltage	Operate time		Operate voltage	Operate time	Operate voltage Opera		erate time	
Range	1,0-1,2 Un	0,1-100s		1,0-1,3 Un	0,1-5s	1,0-1,15 Un		ac	3s not ljustable
Steps	0,01 Un	0,	1s	0,01 U _n	0,05s	0,01 Un			
				Frequency valu	les				
Threshold		Stage ?	1 [81 <]			Stage 2	[81 <<]		
THESHOL	Operate frequ	lency	Op	perate time	Operate frequency		Operate time		
Range	47,0-50,01	Ηz		0,1-100s	47,0-50,01	Ηz		0,1-5s	
Steps	0,1 Hz			0,1 s	0,1 Hz 0		0,05	is	
Threshold		Stage ?	1 [81 >]		Staç		age 2 [81 >>]		
Theshold	Operate frequ	lency	Operate time		Operate frequency		Operate time		; time
Range	50,0-52,01	Ηz	0,1-100s		50,0-52,0Hz		0,1-5s		5s
Steps	0,1 Hz 0,1 s 0,1 Hz						0,05	is	
4.9.2.6	Insensitive against 40ms frequency transients, so that the unit will not trip								
Note:									
The test had	been performed	on the r	nodel AS	SW3000S-S. the	test results are v	/alid for	the ASW	/1000	S-S.

ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

4.9.3Require4.9.3.1General (Setting)	ments on volta (Interface prot value refer EN	age and frequency pro tection: Over/under vo I 50438 for default set	tection bltage) tings)	Р				
Test conditio	ons		Output power: 3,0kW Frequency: 50+/-0,2Hz					
Limit [V]	Trip value [V]	Voltage step [V]	Disconnection time [s]	Limit [s]				
	252,9	230 to 258	2,010					
Stage 1	252,9	230 to 258	2,010					
110% of Un = 253,0	252,9	230 to 258	2,015	≤3,0s				
	252,9	230 to 258	2,010					
	252,9	230 to 258	2,010					
	264,1	230 to 269	0,139					
Stage 2	264,1	230 to 269	0,121	0,1s ≤ t ≤ 0,2s				
115% of U _n	264,1	230 to 269	0,139					
= 264,5	264,1	230 to 269	0,139					
	264,1	230 to 269	0,140					
	195,3	230 to 190	1,298					
Stage	195,3	230 to 190	1,298					
85% of Un	195,3	230 to 190	1,296	1,2s ≤ t ≤ 1,5s				
= 195,5	195,3	230 to 190	1,312					
	195,3	230 to 190	1,290					

Note:

The trip values were evaluated by varying the applied voltage from U_n down to U_{th-low} - 2% of U_n in steps of 0,5% of U_n for under-voltage testing as well as from U_n up to $U_{th-high}$ + 2% of U_n in steps of 0,5% of U_n for over-voltage testing, Lower and upper threshold voltage shall not fall or rise below or above 2,3V of the trip value itself, The disconnection time was measured by application of a negative voltage step from U_n to the operate value -5% of U_n as well as positive voltage step from U_n to the operate value +5% of U_n .

4.9.3Requirements on voltage and frequency protection4.9.3.1General (Maximum voltage 10 min mean protection according to EN 50160) (Setting value refer EN 50438 for default settings)						
		Trip value Setting [V]	253			
Setting	y values of the protection:	Setting Tdisconnection trip value [S]	600			
		Setting Tdisconnection [ms]	200			
Test:						
		Disconnection time [s]	Limit [s]			
	The voltage is set to 100% U _r Disconnection must take plac	and held for 600 s, Thereafter the vo e within 600 s.	Itage is set to 112% U _n ,			
a)	Phase 1:	491 s				
	Phase 2:	N/A	≤ 600 s			
	Phase 3:	N/A				
The voltage is set to Un for 600 s and then to 108% Un for 600 s, No disconnection should take						
b)	Phase 1:	No Disconnection				
5)	Phase 2:	N/A	Disconnection should r	not take		
	Phase 3:	N/A	piaco,			
	The voltage is set to 106 % U 114 % Un, The disconnection	$_{\rm n}$ and held for 600 s, Thereafter the v should last for half the period as in Po	oltage is set to pint a)*			
c)	Phase 1:	261 s	The disconnection time should			
	Phase 2:	se 2: N/A		neasured		
Phase 3:		N/A	in a), *			
Test:						
a) This	s test serves as proof of the me	easurement accuracy and the maximu	ım set time.			
D) I NIS	s test serves as proof of the me	easurement accuracy.				

c) This test serves as proof of the correct formation of the 1 minute running mean value.

Assessment criterion:

The permitted tolerance between setting value and trip value of the voltage may not exceed ± 1 % of U_N.

Limit values:

Rise-in voltage protection 1,1 U_N after a max. 600 s, the switch off after 200 ms.

Note:

If only one integrated protection is used for the power generation systems, the value of the rise-in voltage protection of $1,1 \text{ U}_N$ may not be changed.

*If the setting value is set to 600 s, then the disconnection time can be in the range between 225 s and 375 s. The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

4.9.3Requirements on voltage and frequency protection4.9.3.1General (Interface protection: Over/under frequency)P(Setting value refer EN 50438 Default setting)P								
Test conditions		Output pov Un = 2	ver: 3,0kW 30Vac					
	Under-fr	equency	Over-frequency					
Parameter	Stage 1 Under-Frequency	Time	Stage 1 Over-Frequency	Time				
Limit	47,50 Hz	0,3 ≤ t ≤ 0,5 s	51,50 Hz	0,3 ≤ t	≤ 0,5 s			
	47,50		52,02					
	47,50		52,02					
Trip value [Hz]	47,50		52,02					
	47,50		52,02					
	47,50		52,02					
		0,410		0,3	95			
D '	50,00 Hz	0,420	50,00 Hz	0,4	05			
Disconnection	to	0,435	to	0,4	05			
	47,40 Hz	0,435	52,10 Hz	0,4	20			
		0,435		0,4	20			

For under-frequency testing the applied frequency is varied from f_n down to f_{th-low} -0,1 Hz in steps of 0,025 Hz with a time duration per step exceeding the configured disconnection time, The operate value is the value of the applied frequency at switch the protection function trips and shall be within $f_{th-low} \pm 0,05$ Hz.

For over-frequency testing the applied frequency is varied from f_n up to $f_{th-high} + 0,1$ Hz in steps of 0,025 Hz with a time duration per step exceeding the configured disconnection time, The operate value is the value of the applied frequency at which the protection function trips and shall be within $f_{th-high} \pm 0,05$ Hz.

The disconnection time was measured by applying a negative or positive frequency ramp from f_n to the operate value -0,1 Hz or +0,1 Hz, e,g, from 50 Hz to 47,4 Hz, The time elapsed between the application of the frequency ramp and the opening of the interface switch was calculated by the measured time minus the 2500 ms from 50,0 Hz to 47,5 Hz.

The oscilloscope pictures below show the measured worst case disconnection times.

4.9.4.2 Loss of Mains (LoM) detection

Test circuit and parameters

Parameter	Symbol	Units
EUT DC Input		
DC voltage	VDC	V
DC Current	I _{DC}	А
DC Power	P _{DC}	W
EUT AC ouput		
AC voltage	VEUT	V
AC current	IEUT	А
Real power	PEUT	W
Reactive power	Qeut	VAr
Test Load		
Resistive load current	IR	А
Inductive load current	۱L	А
Capacitive load current	lc	А
AC (utility) power source		
Utility real power	P _{AC}	W
Utility reactive power	Q _{AC}	VAr
L Hilling and and		А

Figure 1 - Test circuit for islanding detection function in a power conditioner (inverter)

Loa	Load imbalance (real, reactive load) for test condition A (EUT output = 100%)								Ρ		
Tes	t :										
Test conditions Frequency: 50+/-0,1Hz U _N =230+/-3Vac Distortion factor of chokes < 2% Quality = 1											
	Disconnec	tion limit					2s (IEC 62	116)			
No	P _{EUT} ¹⁾ [% of EUT rating]	Reactive load [% of Q∟ in 6,1,d) ¹⁾	P _{AC} ²⁾ [% of nominal]	Q _{AC} ³⁾ [% of nominal]	Iac [A	, ⁴⁾ A]	Р _{ЕUT} [kW per phase]	V _{DC} [V]	Qf	Run on Time [ms]	Remarks 5)
1	100	100	0	0	0,0	20	3,000	368	0,999	326	BL
2	100	100	-5	-5	0,6	571	3,000	368	1,025	223	IB
3	100	100	-5	0	0,6	42	3,000	368	1,052	277	IB
4	100	100	-5	+5	0,5	76	3,000	368	1,078	314	IB
5	100	100	0	-5	0,0	21	3,000	368	0,974	223	IB
6	100	100	0	+5	0,1	11	3,000	368	1,024	308	IB
7	100	100	+5	-5	0,6	574	3,000	368	0,928	218	IB
8	100	100	+5	0	0,7	00	3,000	368	0,952	306	IB
9	100	100	+5	+5	0,7	'59	3,000	368	0,975	317	IB
Parameter at 0% per phase				33,68 mH			R= 10,58	Ω		C= 300,8	6 µF

RLC is adjusted to min. +/-1% of the inverter rated output power

¹⁾ P_{EUT}: EUT output power.

 $^{2)}$ P_{AC}: Real power flow at S1 in Figure 1. Positive means power from EUT to utility, Nominal is the 0 % test condition value.

 $^{3)}$ Q_{AC}: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility, Nominal is the 0 % test condition value.

⁴⁾ Fundamental of I_{AC} when RLC is adjusted.

⁵⁾ BL: Balance condition, IB: Imbalance condition.

Condition A:

EUT output power PEUT = Maximum 6)

EUT input voltage $^{6)}$ = >75% of rated input voltage range

⁶⁾ Maximum EUT output power condition should be achieved using the maximum allowable input power, Actual output power may exceed nominal rated output.

⁷⁾ Based on EUT rated input operating range, For example, If range is between X volts and Y volts, 75 % of range =X + 0,75 × (Y – X), Y shall not exceed 0,8 × EUT maximum system voltage (i,e,, maximum allowable array open circuit voltage), In any case, the EUT should not be operated outside of its allowable input voltage range.

Load imbalance (reactive load) for test condition B (EUT output = 50 % – 66 %)								Ρ			
Tes	t :										
	Test con	t conditions Frequency: 50+/-0,1Hz U _N =230+/-3Vac Distortion factor of chokes < 2% Quality =1									
	Disconnec	tion limit					2s (IEC 62	116)			
No	P _{EUT} ¹⁾ [% of EUT rating]	Reactive load [% of Q∟ in 6,1,d) ¹⁾	P _{AC} ²⁾ [% of nominal]	Q _{AC} ³⁾ [% of nominal]	Iac [A	⁴⁾ A]	Р _{ЕUT} [kW per phase]	V _{DC} [V]	Qf	Run on Time [ms]	Remarks
1	66	66	0	-5	0,0	26	1,980	272	0,975	212	IB
2	66	66	0	-4	0,0	24	1,980	272	0,980	231	IB
3	66	66	0	-3	0,0	22	1,980	272	0,985	238	IB
4	66	66	0	-2	0,0	22	1,980	272	0,990	242	IB
5	66	66	0	-1	0,0	22	1,980	272	0,995	287	IB
6	66	66	0	0	0,0	22	1,980	272	1,000	432	BL
7	66	66	0	+1	0,0	26	1,980	272	1,005	418	IB
8	66	66	0	+2	0,0	29	1,980	272	1,010	376	IB
9	66	66	0	+3	0,0	33	1,980	272	1,015	361	IB
10	66	66	0	+4	0,0	38	1,980	272	1,020	318	IB
11	66	66	0	+5	0,0	43	1,980	272	1,025	300	IB
Pa	rameter at 0	% per phase	L= :	51,27 mH			R= 16,11	Ω		C= 197,6	0 µF

RLC is adjusted to min. +/-1% of the inverter rated output power

¹⁾ P_{EUT}: EUT output power.

 $^{2)}$ P_{AC}: Real power flow at S1 in Figure 1, Positive means power from EUT to utility, Nominal is the 0 % test condition value.

 $^{3)}$ Q_{AC}: Reactive power flow at S1 in Figure 1, Positive means power from EUT to utility, Nominal is the 0 % test condition value.

 $^{\rm 4)}$ Fundamental of $I_{\rm AC}$ when RLC is adjusted.

⁵⁾ BL: Balance condition, IB: Imbalance condition.

Condition B:

EUT output power $\mathsf{P}_{\mathsf{EUT}}$ = 50 % – 66 % of maximum

EUT input voltage $^{6)}$ = 50 % of rated input voltage range, ±10 %

⁶⁾ Based on EUT rated input operating range, For example, If range is between X volts and Y volts, 50 % of range =X + 0.5 × (Y – X), Y shall not exceed 0.8 × EUT maximum system voltage (i,e,, maximum allowable array open circuit voltage), In any case, the EUT should not be operated outside of its allowable input voltage range.

Load imbalance (reactive load) for test condition C (EUT output = 25 % – 33 %)								Ρ			
Tes	t :										
	Test con	ditions	Frequency: 50+/-0,1Hz U _N =230+/-3Vac Distortion factor of chokes < 2% Quality =1								
	Disconnec	tion limit	2s (IEC 62116)								
No	P _{EUT} ¹⁾ [% of EUT rating]	Reactive load [% of Q∟ in 6,1,d) ¹⁾	P _{AC} ²⁾ [% of nominal]	Q _{AC} ³⁾ [% of nominal]	I _{AC} [A	4) \]	Р _{ЕUT} [kW per phase]	V _{DC} [V]	Qf	Run on Time [ms]	Remarks
1	33	33	0	-5	0,0	22	990	157	0,975	215	IB
2	33	33	0	-4	0,0	21	990	157	0,980	226	IB
3	33	33	0	-3	0,0	20	990	157	0,985	234	IB
4	33	33	0	-2	0,0	20	990	157	0,990	249	IB
5	33	33	0	-1	0,0	20	990	157	0,995	277	IB
6	33	33	0	0	0,0	20	990	157	1,000	308	BL
7	33	33	0	+1	0,0	22	990	157	1,005	441	IB
8	33	33	0	+2	0,0	24	990	157	1,010	396	IB
9	33	33	0	+3	0,0	25	990	157	1,015	378	IB
10	33	33	0	+4	0,0	28	990	157	1,020	366	IB
11	33	33	0	+5	0,0	31	990	157	1,025	357	IB
Parameter at 0% per phase			L= 1	03,94 mH			R= 32,65	Ω		C= 97,48	βµF

RLC is adjusted to min. +/-1% of the inverter rated output power

¹⁾ P_{EUT}: EUT output power.

 $^{2)}$ P_{AC}: Real power flow at S1 in Figure 1, Positive means power from EUT to utility, Nominal is the 0 % test condition value.

 $^{3)}$ Q_{AC}: Reactive power flow at S1 in Figure 1, Positive means power from EUT to utility, Nominal is the 0 % test condition value.

 $^{\rm 4)}$ Fundamental of $I_{\rm AC}$ when RLC is adjusted.

⁵⁾ BL: Balance condition, IB: Imbalance condition.

Condition B:

EUT output power P_{EUT} = 25 % – 33 % $^{6)}$ of maximum

EUT input voltage $^{7)}$ = <20 % of rated input voltage range

⁶⁾ Or minimum allowable EUT output level if greater than 33 %.

⁷⁾ Based on EUT rated input operating range, For example, If range is between X volts and Y volts, 20 % of range =X + 0,2 × (Y – X), Y shall not exceed 0,8 × EUT maximum system voltage (i,e,, maximum allowable array open circuit voltage), In any case, the EUT should not be operated outside of its allowable input voltage range.

EN 50549-1:2019: Connection and starting to generate electrical power									
Clause	Test requirement	Test procedure according standard	Result						
4.10.2	Automatic reconnection after trippin	EN 50438, Annex D.3.6	Р						
4.10.3	Starting to generate electrical power	EN 50438, Annex D.3.6	Р						

4.10 4.10.2 4.10.3	Connection and starting to generate electrical power Automatic reconnection after tripping Starting to generate electrical power					
	Min. voltage for conne	ected to grid :		19	6	
	Max. voltage for conn	ected to grid :		25	3	
	Min. frequency for co	nnected to grid :		49,	,5	
Setting value	Max. frequency for co (Normal operational s	nnected to grid tart-up) :		50,	1	
	Max. frequency for co (Automatic reconnect	50,	2			
	Observation time (≥60	Ds) :		60)	
Test:				•		
		Voltage c	onditons			
a) Start up for v	oltage range	<85% Un for twice of observation time	<85% Un for twice of observation time observation time			
Connection:		No connection	No connection			
Limit		No connect	ion allowed			
b) In voltage rar	nge at start-up	≥85% Un within twice setting observation time ≤110% Un within twice observation time			e setting e	
Reconnection ti	me [s]	68 s	67 s			
Limit:		Connected after setting observation time (\geq 60s)				
Gradient:		The maximum occurring active power gradient after connection respectively start generating electrical power is less than the configured maximum active power per minute Max gradient: disable, For recorded gradient see diagram below,				
c) In voltage rar failture	nge after voltage	≥85% Un for twice of setting observation time	≤110% U ob:	≤110% Un for twice of set observation time		
Reconnection ti	me [s]	68 s		70 s		
Limit:		Reconnection after setting	g observatio	n time (≥60s))	
		For adjustable micro generators the gradient after connection respective power is less than the configured m Max gradient: 10%P _{Emax} /min.	e maximum o ely start geno naximum act	occurring act erating electr ive power pe	ive power ical r minute	
Gradient:		For non or partly adjustable general interface protection is delayed by a and 10 min.	For non or partly adjustable generators the connection after trip of the interface protection is delayed by a randomised value between 1 min and 10 min.			
		For recorded gradient see diagram below.				

	Frequency conditions					
d) Start up for frequency range	<49,50 Hz for twice of setting observation time	>50,10 Hz for twice of setting observation time				
Connection:	No connection	No connection				
Limit	No connect	ion allowed				
e) In frequency range at start-up	≥49,50 Hz within twice of setting observation time	≤50,10 Hz within twice of setting observation time				
Reconnection time [s]	68 s	67 s				
Limit:	Connected after set	ing delay time(≥60s)				
Gradient:	The maximum occurring active power gradient after connection respectively start generating electrical power is less than the configured maximum active power per minute Max gradient: disable					
	For recorded gradient see diagram below.					
f) In frequency range after frequency failture	≥49,50 Hz for twice of setting observation time	≤50,20 Hz for twice of setting observation time				
Reconnection time [s]	68 s	68 s				
Limit:	Reconnection after settin	g observation time (≥60s)				
	For adjustable micro generators the maximum occurring active power gradient after connection respectively start generating electrical power is less than the configured maximum active power per minute Max gradient: 10%PEmax/min.					
Gradient:	For non or partly adjustable generators the connection after trip of the interface protection is delayed by a randomised value between 1 min and 10 min.					
	For recorded gradient see diagram below.					

Test:

Test condition b) and c): voltage within the limits of 85% to $110\% U_n$.

Test condition e): frequency within the limits of 49,50Hz to 50,1Hz.

Test condition f): frequency within the limits of 49,50Hz to 50,2Hz.

In order to avoid continuous starting and disengaging operations of the interface protection relay, the disengaging value of frequency and voltage functions shall be above 2 % deviating from the operate value.

The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

Assessment criterion:

a) the micro generator connects respectively starts generating electrical power only in the

permitted range of voltage and frequency and

b) for adjustable micro generators the maximum occurring active power gradient after connection

respectively start generating electrical power is less than the configured maximum active power per minute and

c) for non or partly adjustable generators the connection after trip of the interface protection is delayed by a randomised value between 1 min and 10 min.

EN 50549-1:2019: Ceasing and reduction of active power on set point									
Clause	Test requirement	Test procedure according standard	Result						
4.11.1	Ceasing active power	CEI 0-21:2019-04, Annex A.4.3.3.2	Р						
4.11.2	Reduction of active power on a set point	FGW TG3, Revision 25, clause 4.1.2	Р						

4.11.1 Ceasing active power P Operating time of the monitoring device Test: Remote tripping signal for the external disconnection Limit [s]: 5 s Reaction time of the tripping value [s]: 0,039 s

Note:

The test method refer to Annex A,4,3,2 of CEI 0-21:2019-04,

Generating plants shall be equipped with a logic interface (input port) in order to cease active power output within five seconds following an instruction being received at the input port, If required by the DSO, this includes remote operation.

4.11.2 Reduction of active power on set point							
Test result:							
Setpoint power bin [%P _{Emax}]	P _{set} [kW] P ₆₀ [kW		Deviation [%	6P _{Emax}]			
100%	3,000	3,004	0,144				
90%	2,700	2,714	0,451				
80%	2,400	2,406	0,190				
70%	2,100	2,101	0,039				
60%	1,800	1,799	-0,045	-0,045			
50%	1,500	1,495	-0,167	-0,167			
40%	1,200	1,204	0,132				
30%	0,900	0,898	-0,075	5			
20%	0,600	0,591	-0,294	ļ.			
10%	0,300	0,284	-0,519)			
5%	0,150	0,140	-0,328	3			
Setpoint power [%P _{Emax}]		bin Deviation					
Max. deviation	10%		-0,519				
Limit AP E60/P Setpoint:	+ 5 % of P _{Emax}						

Test:

The setpoint signal must be reduced from 100% to 0% P_{Emax}:

 a) for adjustable PGUs in increments of 10% P_{Emax}, 1 minute must elapse after every change to the setpoint setting so that the PGU can settle at the new setpoint, Then the active power of the PGU must be measured as a 1-min mean value.

b) For all other PGUs, in line with their adjustable steps, 5 minutes must elapse after the setpoint setting is changed so that the PGU can settle at the new setpoint, Then the active power of the PGU must be measured as a 1-min mean value.

Assessment criterion:

a) for adjustable PGUs:

- no network disconnection
- the active power value does not exceed the setpoint by more than 5% $\mathsf{P}_{\mathsf{Emax}}$
- the setting time determined this way is ≤ 1 min
- b) For all other PGUs:
 - the active power value does not exceed the setpoint by more than 5% $\mathsf{P}_{\mathsf{Emax}}$ or
 - the setpoint is fallen below within 5 minutes or the PGU has switched off

Note:

The setting time is \leq 1min. See below "Graph of the setting accuracy".

EN 50549-1:2019							
Clause	Test requirement	Test procedure according standard	Result				
4.13	Requirements regarding single fault tolerance of interface protection system and interface switch	VDE V 0124-100:2019-02 (Draft), clause 5.5.2	Ρ				

4.13 I	Requirem system ai	ents regand interfa	arding sin	ngle fault h	toleranc	e of inter	face prote	ection	Р
Component	Fault	Test co	ondition	Test	Fuse	Fault c	ondition	Deer	14
No.	Fault	AC	DC	time	No,	AC	DC	- Resu	It
Bus Voltage detector (R119)	0-C	230V 21,7A	380V 13,2A	30min	-	230V 0,01A	487V 0,01A	The PCE shut PCE didn't star code.No harza happened.	down.The t. No error rd
Iverter Voltage detector (R238)	0-C	230V 21,7A	380V 13,2A	30min	-	230V 0,01A	487V 0,01A	The PCE shut PCE didn't star Relay check fa harzard happe	down.The rt. Error 3 il.No ned.
Grid/AC Voltage detector (R201)	0-C	230V 21,7A	380V 13,2A	30min	-	230V 0,01A	487V 0,01A	The PCE shut PCE didn't star AC voltage che harzard happe	down.The rt.Error 34 eck fail. No ned.
Grid/AC Voltage detector (R212)	0-C	230V 21,7A	380V 13,2A	30min	-	230V 0,01A	487V 0,01A	The PCE shut PCE didn't star AC voltage che harzard happe	down.The rt.Error 34 eck fail. No ned.
Grid/AC Voltage detector (R248)	0-C	230V 21,7A	380V 13,2A	30min	-	230V 0,01A	487V 0,01A	The PCE shut PCE didn't star AC voltage che harzard happe	down.The rt.Error 34 eck fail. No ned.
Grid/AC Current detector (R223)	0-С	230V 21,7A	380V 13,2A	30min	-	230V 0,01A	487V 0,01A	The PCE shut PCE didn't star code.No harza happened.	down.The t. No error rd
DC isolation device function detector (R620)	o-c before start up	230V 0,01A	487V 0,01A	30min	-	230V 0,01A	487V 0,01A	The PCE didn' Error 38 ISO c No harzard ha	t start. heck fail. opened.
DC isolation device function detector (Q601 D-S)	s-c before start up	230V 0,01A	487V 0,01A	30min	-	230V 0,01A	487V 0,01A	The PCE didn' Error 38 ISO c No harzard haj	t start. heck fail. opened.
DC isolation device function detector (R605)	o-c before start up	230V 0,01A	487V 0,01A	30min	-	230V 0,01A	487V 0,01A	The PCE didn' Error 38 ISO c No harzard haj	t start. heck fail. opened.
DC isolation device function detector (R618)	o-c before start up	230V 0,01A	487V 0,01A	30min	-	230V 0,01A	487V 0,01A	The PCE didn' Error 38 ISO c No harzard ha	t start. heck fail. opened.
DC isolation device function detector (R639)	o-c before start up	230V 0,01A	487V 0,01A	30min	-	230V 0,01A	487V 0,01A	The PCE didn' Error 38 ISO cl No harzard ha	t start. heck fail. opened.

Copyright © Bureau Veritas Consumer Products Services Germany GmbH This report must not be reproduced in part or in full without the written approval of the issuing testing laboratory.

Page 96 of 105

Report No.: 20TH0200-EN50549-1_0

Component No.	Fault	Test condition		Test	Fuse	Fault condition		Decult
		AC	DC	time	No,	AC	DC	Kesuit
DC isolation device function detector (R615)	o-c before start up	230V 0,01A	487V 0,01A	30min	-	230V 0,01A	487V 0,01A	The PCE didn't start. Error 38 ISO check fail. No harzard happened.
Residual current detector (R275)	0-C	230V 13,1A	380V 7,9A	30min	-	230V 0,01A	487V 0,01A	The PCE shut down.The PCE didn't start. Error 9 GFCI check fail. No harzard happened.
Residual current detector (R226)	о-с	230V 13,1A	380V 7,9A	30min	-	230V 0,01A	487V 0,01A	The PCE shut down.The PCE didn't start. Error 9 GFCI check fail. No harzard happened.
Residual current detector (R227)	о-с	230V 13,1A	380V 7,9A	30min	-	230V 0,01A	487V 0,01A	The PCE shut down.The PCE didn't start. Error 9 GFCI check fail. No harzard happened.
Residual current detector (R228)	0-C	230V 13,1A	380V 7,9A	30min	-	230V 0,01A	487V 0,01A	The PCE shut down.The PCE didn't start. Error 9 GFCI check fail. No harzard happened.
Relay 201	s-c before start up	230V 0,01A	487V 0,01A	30min	-	230V 0,01A	487V 0,01A	The PCE didn't start. Error 3 Relay check fail. No harzard happened.
Relay 202	s-c before start up	230V 0,01A	487V 0,01A	30min	-	230V 0,01A	487V 0,01A	The PCE didn't start. Error 3 Relay check fail. No harzard happened.
Relay 203	s-c before start up	230V 0,01A	487V 0,01A	30min	-	230V 0,01A	487V 0,01A	The PCE didn't start. Error 3 Relay check fail. No harzard happened.
Relay 204	s-c before start up	230V 0,01A	487V 0,01A	30min	-	230V 0,01A	487V 0,01A	The PCE didn't start. Error 3 Relay check fail. No harzard happened.
Relay function detector (Q405 D-S)	s-c	230V 0,01A	487V 0,01A	30min	-	230V 0,01A	487V 0,01A	The PCE didn't start. Error 3 Relay check fail. No harzard happened.
Inverter drive (R301)	0-C	230V 13,1A	380V 7,9A	30min	-	230V 0,01A	487V 0,01A	The PCE shut down.The PCE didn't start.Error 4 DCI protestion. No harzard happened.
Inverter drive (R309)	0-C	230V 13,1A	380V 7,9A	30min	-	230V 0,01A	487V 0,01A	The PCE shut down.The PCE didn't start.Error 4 DCI protestion. No harzard happened.

Page 97 of 105

Report No.: 20TH0200-EN50549-1_0

Component No.	Fault	Test condition		Test	Fuse	Fault condition		Desult
		AC	DC	time	No,	AC	DC	Result
Inverter drive (R313)	0-C	230V 13,1A	380V 7,9A	30min	-	230V 0,01A	487V 0,01A	The PCE shut down.The PCE didn't start.Error 4 DCI protestion. No harzard happened.
Main CPU oscillator (R749)	s-c	230V 13,1A	380V 7,9A	30min	-	230V 0,01A	487V 0,01A	The PCE shut down.The PCE didn't start.No error code. No harzard happened.
MainCPU and slave CPU communication (R792)	о-с	230V 13,1A	380V 7,9A	30min	-	230V 0,01A	487V 0,01A	The PCE shut down.The PCE didn't start.No error code. No harzard happened.
MainCPU and slave CPU communication (R765)	о-с	230V 13,1A	380V 7,9A	30min	-	230V 0,01A	487V 0,01A	The PCE shut down.The PCE didn't start.No error code. No harzard happened.
The errors in the control circuit simulate that the safety is even under one error ensured,								
Addendum – Shutdown device								
Each active phase can be switched, (L and N) Yes								
If no galvanic separation between AC and DC (PV): Two relays in series on each active phase are necessary to fulfil the basic insulation or simple separation based on the PV working voltage,							Two relays in series on each active phase	
Note:								

ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

Annex No. 3 Pictures of the unit

Enclosure front view

Enclosure Bottom view

Enclosure side view-1

Internal view 1

Annex No.4 Test Equipment list

Copyright © Bureau Veritas Consumer Products Services Germany GmbH This report must not be reproduced in part or in full without the written approval of the issuing testing laboratory.

Equipment	Internal No,	Manufacturer	Туре	Serial No,	Calibration is valid to	
Power analyzer	SCGJ296	YOKOGAWA	WT1800	//	Feb. 14, 2020	
Oscilloscope	SCGJ417	YOKOGAWA	DLM2024	//	Feb. 14, 2020	
	SCGT208	Agilent	DSO7014B	//	Feb. 14, 2020	
AC Source	656038001333	CHROMA	6560	//		
DC Simulation Power	62150EF01095	CHROMA	62150H-1000S	//	Monitored by Power analyzer	
supply	62150EF01095	CHROMA	62150H-600S	//		
RLC load	93V002581	Qunling	ACTL-3803H	//		
AC/DC Current probel	ZSCGJ0161	Tektronix	A622	//	Feb. 14, 2020	
Differential probel	P5200A	Tektronix	P5200A	//	Feb. 14, 2020	
Multi-meter	SCGJ334	Fluke	F287	//	Feb. 14, 2020	

Date(s) of performance test: 2019-12-10 to 2020-01-08