TEST REPORT EN 50549-1:2019

Requirements for generating plants to be connected in parallel with distribution networks - Part 1-1:
 Connection to a LV distribution network - Generating plants up to and including Type \mathbf{B}

Report reference number:	20TH0200-EN50549-1_0
Date of issue.............................. :	2020-01-14
Total number of pages :	105

Ratings :	ASW1000S-S	ASW1500S-S	ASW2000S-S	ASW3000S-S
MPP DC input voltage [V] :	$80-550 \mathrm{Vdc}$			
Input DC voltage range [V].............. :	$80-580 \mathrm{Vdc}$			
Input DC current [A] :	$2 \times 12 \mathrm{~A}$			
Output AC voltage [V] :	$220 / 230 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$			
Output AC current [A]..................... :	Max.5,0	Max.7,5	Max.10,0	Max. 13,6
Nominal Output power [KW] :	1,000	1,500	2,000	3,000
Max.Output apparent power [KVA].. :	1,000	1,500	2,000	3,000

Testing Location \qquad Address \qquad	AISWEI New Energy Technology(Jiangsu) Co.,Ltd Building 9,No. 198 Xiangyang Road,215011 Suzhou,P.R.China
Tested by (name and signature) \qquad	Weizhao Zheng Zheng, Weizheo.
Approved by (name and signature) \qquad	Georg Loritz Georg Lorit
Manufacturer's name................... :	AISWEI New Energy Technology(Jiangsu) Co.,Ltd
Manufacturer address :	Building 9,No. 198 Xiangyang Road,215011 Suzhou,P.R.China
Factory's name :	AISWEI New Energy Technology (Yangzhong) Co., Ltd
Factory address :	No. 588 Gangxing Road, Yangzhong, Jiangsu P.R.China

Document History			
Date	Internal reference	Modification / Change / Status	Revision
$2020-01-14$	Weizhao Zheng	Initial report was written	0
Supplementary information:			

Test items particulars

Equipment mobility:	Permanent connection
Operating condition:	Continuous
Class of equipment:	Class I
Protection against ingress of water...	IP65 according to EN 60529
Mass of equipment [kg] :	6,5kg
Test case verdicts	
Test case does not apply to the test object.	N/A
Test item does meet the requirement \qquad	P (ass)
Test item does not meet the requirement \qquad	F(ail)
Testing	
Date of receipt of test item:	2019-11-01
Date(s) of performance of test:	2019-12-10 to 2020-01-08

General remarks:

The test result presented in this report relate only to the object(s) tested. The report shall state compliance of the tested objects with the requirements of EN 50549-1. This report shall not be reproduced in part or in full without the written approval of the issuing testing laboratory.
"(see Annex \#)" refers to additional information appended to the report.
"(see appended table)" refers to a table appended to the report.
Throughout this report a comma is used as the decimal separator.

This Test Report consists of the following documents:

1. Test Report
4.4 Normal operating range
4.5 Immunity to disturbances
4.6 Active response to frequency deviation
4.7 Power response to voltage variations and voltage changes
4.8 EMC and power quality
4.9 Interface protection
4.10 Connection and starting to generate electrical power
4.11 Ceasing and reduction of active power on set point
4.13 Requirements regarding single fault tolerance of interface protection system and interface switch
2. Annex No. 3 - Pictures of the unit
3. Annex No. 4 - Test equipment list

Copy of marking plate

Model: ASW1000S-S	
Max input voltage	d.c. 580 V
MPP voltage range	d.c. $80-550 \mathrm{~V}$
Max. input current	d.c. 12 A
Isc PV(absolute maximum)	d.c. 18A
Rated grid voltage	a.c. $220 / 230 \mathrm{~V}$
Rated grid frequency	$50 / 60 \mathrm{~Hz}$
Max. AC output active power	1000W
Max. AC output apparent power	1000VA
Max.continuous output current	a.c. 5A
Adjustable $\cos (\phi)$	0.8ind...0.8cap
Operating temperature range	$-25 . . .460^{\circ} \mathrm{C}$
Ingress protection	IP65
Protective class	I
Overvoltage category	$\begin{array}{\|l\|} \hline \text { II(PV) } \\ \text { III(MAINS) } \\ \hline \end{array}$
Supported DRMO,DRMS,DRMG,DRMT,D	
AISWEI New Energy Technology (Jiangru) Ca., itd. Tat.: + 8651269370398	
$532-00443-00$	Madein China

Copyright © Bureau Veritas Consumer Products Services Germany GmbH This report must not be reproduced in part or in full without the written approval of the issuing testing laboratory.

General product information:

The Solar converter converts DC voltage into AC voltage.
The input and output are protected by Varistors to Earth. The unit is providing EMC filtering at the output toward mains. The unit does not provide galvanic separation from input to output (transformerless). The output is switched off redundant by the high power switching bridge and two relays. This assures that the opening of the output circuit will also operate in case of one error.
This unit is a single-phase inverter, that it is combine with operation mode. The inverter is able to generate power from solar modules to feed the grid(utility), also feed in the power to grid from the PV array.
The Solar converter provides with PV array of input.
The input of Solar converter can be supplied from PV array only.
Slip-mode frequency shift detection was used for LOM protection.

Description of the electrical circuit:

The internal control is redundant built. It consists of Microcontroller Master DSP(U705) and Slave DSP(U710).
The Master DSP control the relays by switching signals; measures the PV voltage, PV current, Bus voltage, grid voltage, frequency, AC current with injected DC and the array insulation resistance to ground. In addition it tests the current sensors and the RCMU circuit before each start up.

The Slave DSP is measures the grid voltage, AC current, grid frequency and residual current, also can switch off the relays independently, and communicate with Master DSP each other.

The current is measured by a current sensor. The AC current signal and the injected DC current signal are sent to the Master DSP. The Master DSP tests and calibrates before each start up all current sensors.

The unit provides two relays in series in all output conductors. When single fault applied to one relay, alarm an error code on the mobile app or the upper computer, another redundant relay provides basic insulation maintained between the PV array and the mains. All the relays are tested before each start up. Both CPU can switch of the relays.

Figure 1 - Block diagram

Differences of the models:

The models ASW1000S-S, ASW1500S-S, ASW2000S-S and ASW3000S-S are identical in hardware and software, and the output power derated by software.
The product was tested on:
Hardware: V1.0
Software: V1.0

All tests were performed on EUT of ASW3000S-S. Tests of the EUT of ASW3000S-S applicable for the models ASW1000S-S, ASW1500S-S and ASW2000S-S were performed on the concerned models and a statement is given at the relevant test.

General remarks:

The test results presented in this report relate only to the object(s) tested.
This document may be published or passed on in full only. Extraction of parts needs the written permission of Bureau Veritas Consumer Products Services GmbH.
"(see Annex \#)" refers to additional information appended to the report.
"(see appended table)" refers to a table appended to the report.
Throughout this report a comma is used as the decimal separator.
The following suffixes are used for variables in tables and figures:

- " P_{n} " for the nominal active power:

$$
P_{n}=U_{n} \times I_{n} \times \cos \varphi_{n} \text { (single-Phase); } P_{n}=\sqrt{ } 3 U_{n} x I_{n} \times \cos \varphi_{n} \text { (three-Phase) }
$$

- "Рм" for the momentary power
- "(c)" for over-excited
- "(i)" for under-excited

Active and reactive power:

The regarded system of the voltage and current vectors is the load view (Figure 2):

- If the inverter feeds to the grid the active power is measured with negative sign. For the sake of reading the document the measured active infeed power has a positive sign

- If the inverter consumes inductive reactive power the reactive power is marked "inductive" or has a positive sign.
- If the inverter consumes capacitive reactive power the reactive power is marked "capacitive" or has a negative sign.

Figure 2

Default interface protection settings according EN 50549-1:2019:

Parameter	Max. disconnection time	Min. operate time	Trip value
Over voltage - stage 1	3 s	$0,1 \mathrm{~s}$	$230 \mathrm{~V}+10 \%(253 \mathrm{~V})$
Over voltage - stage 2	$0,2 \mathrm{~s}$	$0,1 \mathrm{~s}$	$230 \mathrm{~V}+15 \%(264,5 \mathrm{~V})$
Under voltage	$1,5 \mathrm{~s}$	$1,2 \mathrm{~s}$	$230 \mathrm{~V}-15 \%(195,5 \mathrm{~V})$
Over frequency	$0,5 \mathrm{~s}$	$0,3 \mathrm{~s}$	$52,0 \mathrm{~Hz}$
Under frequency	$0,5 \mathrm{~s}$	$0,3 \mathrm{~s}$	$47,5 \mathrm{~Hz}$

An explicit Loss of Mains functionality shall be included. Established methods such as, but not limited to, Rate of Change of Frequency, Vector Shift or Source Impedance Measurement may be used. Where Source Impedance is measured, this shall be achieved by purely passive means, Any implementation which involves the injection of pulses onto the distribution network, shall not be permitted.

ROCOF (where used)	2 s
Reconnection settings for voltage	$0,85 \mathrm{U}_{\mathrm{n}} \leq \mathrm{U} \leq 1,10 \mathrm{U}_{\mathrm{n}}$
Connection settings for frequency (Normal operational start-up)	$49,5 \mathrm{~Hz} \leq \mathrm{f} \leq 50,1 \mathrm{~Hz}$
Reconnection settings for frequency (Automatic reconnection after tripping)	$49,5 \mathrm{~Hz} \leq \mathrm{f} \leq 50,2 \mathrm{~Hz}$
Reconnection time	$\geq 60 \mathrm{~s}$
Active power gradient after reconnection	$0,5 \%$ of rated inverter output current or 20mA
Permanent DC-injection	Inverter shall disconnect within 2 s.
Loss of mains according EN 62116	

The stated currents and voltages are 'true r.m.s.'-values.
The voltages in this table are

- phase-to-neutral in 230 V single phase systems and 230/400 V systems,
- phase-to-phase in a multiphase 230 V system.

Tolerances on trip values:

- Voltage: $\pm 1 \%$ of U_{n}
- Frequency: $\pm 0,05 \mathrm{~Hz}$
- Disconnection time : $\pm 10 \%$

The following deviations for Poland, have been applied according the EN 50549-1:2019:

Parameter	operate time	Trip value
ROCOF (where used)	5 s	$0,4 \mathrm{~Hz} / \mathrm{s}$

An explicit Loss of Mains functionality shall be included. Established methods such as, but not limited to, Rate of Change of Frequency, Vector Shift or Source Impedance Measurement may be used. Where Source Impedance is measured, this shall be achieved by purely passive means, Any implementation which involves the injection of pulses onto the distribution network, shall not be permitted.

The stated currents and voltages are 'true r.m.s.'-values.
The voltages in this table are

- phase-to-neutral in 230 V single phase systems and $230 / 400 \mathrm{~V}$ systems,
- phase-to-phase in a multiphase 230 V system.

Tolerances on trip values:

- Voltage: $\pm 1 \%$ of U_{n}
- Frequency: $\pm 0,05 \mathrm{~Hz}$
- Disconnection time : $\pm 10 \%$

EN 50549:2019, clause 4: Tests

Clause	Test requirement (According to table C.1)	Result
4.4	Normal operating range	\mathbf{P}
4.5	Immunity to disturbances	\mathbf{P}
4.6	Active response to frequency deviation	\mathbf{P}
4.7	Power response to voltage variations and voltage changes	\mathbf{P}
4.8	EMC and power quality	\mathbf{P}
4.9	Interface protection	\mathbf{P}
4.10	Connection and starting to generate electrical power	\mathbf{P}
4.11	Ceasing and reduction of active power on set point	\mathbf{P}
4.12	Remote information exchange	N/A
4.13	Requirements regarding single fault tolerance of interface protection system and interface switch	\mathbf{P}

EN 50549-1:2019: Normal operating range

Clause	Test requirement	Test procedure according standard	Result
4.4 .2	Power response to over-frequency	EN 50438, Annex D.3.1	P
4.4 .3	Power response to under-frequency	G99/1-4, clause A.7.3.2	P
4.4 .4	Continuous operating voltage range	EN 50438, Annex D.3.1	P

$\begin{array}{ll}\text { 4.4.2 } & \text { Operating frequency range } \\ \text { 4.4.4 } & \text { Continuous operating voltage range }\end{array}$					P
Setting values		Over-voltage [V]:	253		
		Under-voltage [V]:	195,5		
		Over-frequency [Hz]:	51,5		
		Under-frequency [Hz]:	47,5		
Test result:					
Test sequence	Voltage [V]	Frequency [Hz]	Output power [kW]	$\operatorname{Cos} \varphi$	
Test1	195,59	47,50	2,672	0,9985	
Test2	195,59	48,50	2,672	0,9985	
Test3	253,19	51,50	3,000	0,9999	
Test4	230,48	50,00	3,012	0,9999	
Test5	230,08	50,50	3,007	0,9988	
Note: Test method refer clause D.3.1 of EN 50438:2013. During the tests the interface protection was disabled. Operation at reduced power is allowed during test 1 , equal to the maximum power that can be supplied on reaching the maximum output current limit ($\mathrm{P} \geq 0,85 \mathrm{~S}_{\mathrm{n}}$). During the sequence of test 3 , automatic adjustment to reduce power in the case of over-frequency was disabled. The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.					

Test result:

	Switch to:				
5-min mean value (each)	a) $49,50 \mathrm{~Hz}$	b) $49,00 \mathrm{~Hz}$	c) $48,00 \mathrm{~Hz}$	d) $47,60 \mathrm{~Hz}$	e) $47,10 \mathrm{~Hz}$
Frequency [Hz]:	49,50	49,00	48,00	47,60	47,10
Active power [kW]:	3,006	3,006	3,005	3,004	3,005
$\Delta \mathrm{P} / \mathrm{P}_{\mathrm{n}}[\%]:$	0,205	0,197	0,178	0,149	0,169

Assessment criterion:

Test method refer clause A.7.3.2 of G99/1-4
The frequency should then be set to $49,5 \mathrm{~Hz}$ for 5 minutes. The output should remain at 100% of registered Capacity.
The frequency should then be set to $49,0 \mathrm{~Hz}$ and once the output has stabilised, held at this frequency for 5 minutes. The Active Power output must not be below 99\% of registered Capacity.
The frequency should then be set to $48,0 \mathrm{~Hz}$ and once the output has stabilised, held at this frequency for 5 minutes. The Active Power output must not be below 97\% of registered Capacity.
The frequency should then be set to $47,6 \mathrm{~Hz}$ and once the output has stabilised, held at this frequency for 5 minutes. The Active Power output must not be below 96.2% of registered Capacity.
The frequency should then be set to $47,1 \mathrm{~Hz}$ and held at this frequency for 20 s . The Active Power output must not be below $95,0 \%$ of registered Capacity and the Synchronous Power Generating Module must not trip in less than the 20 s of the test.

Maximum allowable power reduction in case of under-frequency

Note:

The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

EN 50549-1:2019: Immunity to disturbances			
Clause	Test requirement	Test procedure according standard	Result
4.5 .2	Rate of change of frequency (RoCoF) immunity	G99/1-4:2019, clause A.7.1.2.6	P
4.5 .3	Low voltage ride through (LVRT)	VDE V 0124-100:2019-02 (Draft), clause 5.8 .3.	P
4.5 .4	High voltage ride through (HVRT)	VDE V 0124-100:2019-02 (Draft), clause 5.8 .3.	P
4.7 .4	Zero current mode for converter connected generating plants	VDE V 0124-100:2019-02 (Draft), clause 5.8 .3.	\mathbf{P}

4.5.2 Rate of change of frequency (ROCOF) immunity	P			
	Start Frequency	Change	End Frequency	Confirm no trip
	49 Hz	$+2 \mathrm{~Hz} / \mathrm{sec}$	51 Hz	No trip
Positive Frequency drift	51 Hz	$-2 \mathrm{~Hz} / \mathrm{sec}$	49 Hz	No trip
Negative Frequency drift				

Note:

Test method refer clause A.7.1.2.6 of G99/1-4:2019.
Hold for 10 s
Manufacturers considering new designs should allow for the RoCoF where stability is required to be increased to, up to 2 Hz per second, as proposed in the new European network codes, which are expected to come into force over the period 2014/2015. Under these conditions RoCoF will cease to be an effective loss of mains protection and is unlikely to be permitted in future revisions of this document.
For the step change test the SSEG should be operated with a measureable output at the start frequency and then a vector shift should be applied by extending or reducing the time of a single cycle with subsequent cycles returning to the start frequency. The start frequency should then be maintained for a period of at least 10 seconds to complete the test. The SSEG should not trip during this test.
For frequency drift tests the SSEG should be operated with a measureable output at the start frequency and then the frequency changed in a ramp function at $0,95 \mathrm{~Hz}$ per second to the end frequency. On reaching the end frequency it should be maintained for a period of at least10 seconds. The SSEG should not trip during this test.
The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

4.5.3	Low voltage ride through (LVRT)	P
4.5.4	High voltage ride through (HVRT)	
4.7.4	Zero current mode for converter connected generating plants	

General:

If the voltage on the generator terminals falls below $<0.8 U_{n}$ and if the generator terminals exceed the voltage of $>1.15 \mathrm{U}_{\mathrm{n}}$ (start of fault), generator must pass through voltage dips without any current being drawn into the grid Network operator (limited dynamic network support).
This requirement is met if, for a voltage dip below $0.8 \mathrm{U}_{\mathrm{n}}$ or at a voltage increase above $1.15 \mathrm{U}_{\mathrm{n}}$, the injected current of the generating unit (s) and / or the memory 60 ms after occurrence of this voltage dip in any outer conductor 20% of the rated current I_{r} and does not exceed> $10 \% \mathrm{I}_{r}$ after 100 ms .
After the voltage returned to continuous operating voltage range of $-15 \% U_{n}$ to $+10 \% U_{n}, 90 \%$ of pre fault power or available power whichever is the smallest shall be resumed as fast as possible, but at the latest within 1 s unless the DSO and the responsible party requires another value.

Figure 6 - Low voltage ride through capability for non-synchronous generating technology

Figure 8 - Over-voltage ride through capability

BUREAU
VERITAS

Test	Drop depth requirement [p.u. U_{n}]	Symmetry	Fault duration [ms]	Output power level		k-factor	Test no.
				P set point ($\left.\mathrm{Pre}_{\mathrm{r}} / \mathrm{p} . \mathrm{u}.\right)$	Q set point (Q / p.u.)		
1.A. 1	0,05	Symmetrical	250	1,0	0,00	2	1.A. 1
1.A. 2				0,2			1.A. 2
1.D. 1				1,0			1.D. 1
1.D. 2				0,2			1.D. 2
1.B. 1		Single phase*		1,0			1.B. 1
1.B. 2				0,2			1.B. 2
2.A. 1	0,31	Symmetrical	1300	1,0	0,00	2	2.A. 1
2.A. 2				0,2			2.A. 2
2.D. 1				1,0			2.D. 1
2.D. 2				0,2			2.D. 2
2.B. 1		Single phase*		1,0			2.B. 1
2.B. 2				0,2			2.B. 2
3.A. 1	0,85	Symmetrical	3000	1,0	0,00	2	3.A. 1
3.A. 2				0,2			3.A. 2
3.D. 1				1,0			3.D. 1
3.D. 2				0,2			3.D. 2
3.B. 1		Single phase*		1,0			3.B. 1
3.B. 2				0,2			3.B. 2
OV1	1,25	Symmetrical	100	1,0	0,00	2	OV1
OV2	1,20		5000	1,0			OV2
OV3	1,15		60000	1,0			OV3

Note:
For every kind of voltage dip a test without load has to be performed in order to prove that the test condition was fulfilled. The voltage has to drop to AT LEAST the defined depth level. An exception can be considered in case no current is supplied during dips.

* Single phase = "choose Typ 7 at BV-Lab Studio" $\hat{=}$ LVRT Typ B

Graph of FRT test one

Test result:

List of tests	Residual amplitude of phase-to-phase voltage [p.u. U_{n}]	Duration limit [ms]	Duration [ms]	Result
$\mathrm{Pemax}_{\text {min }}$ \%	20\% $\pm 5 \%$			
1.D.1- Asymmetrical fault phase [Phase 1]	0,05	250 ± 20	251	Pass
1.D.1- Asymmetrical fault phase [Phase 2]	0,05	250 ± 20	250	Pass
1.D.1-Asymmetrical fault phase [Phase 3]	0,05	250 ± 20	250	Pass
2.D.1- Asymmetrical fault phase [Phase 1]	0,31	1300 ± 20	1300	Pass
2.D.1-Asymmetrical fault phase [Phase 2]	0,31	1300 ± 20	1300	Pass
2.D.1- Asymmetrical fault phase [Phase 3]	0,31	1300 ± 20	1300	Pass
3.D.1-Asymmetrical fault phase [Phase 1]	0,85	3000 ± 20	3000	Pass
3.D.1-Asymmetrical fault phase [Phase 2]	0,85	3000 ± 20	3000	Pass
3.D.1-Asymmetrical fault phase [Phase 3]	0,85	3000 ± 20	3000	Pass
$\mathrm{Pemax}_{\text {in }}$ \%	100\% $\pm 5 \%$			
1.D.2- Asymmetrical fault phase [Phase 1]	0,05	250 ± 20	250	Pass
1.D.2- Asymmetrical fault phase [Phase 2]	0,05	250 ± 20	251	Pass
1.D.2- Asymmetrical fault phase [Phase 3]	0,05	250 ± 20	250	Pass
2.D.2- Asymmetrical fault phase [Phase 1]	0,31	1300 ± 20	1300	Pass
2.D.2- Asymmetrical fault phase [Phase 2]	0,31	1300 ± 20	1300	Pass
2.D.2- Asymmetrical fault phase [Phase 3]	0,31	1300 ± 20	1300	Pass
3.D.2- Asymmetrical fault phase [Phase 1]	0,85	3000 ± 20	3000	Pass
3.D.2- Asymmetrical fault phase [Phase 2]	0,85	3000 ± 20	3000	Pass
3.D.2- Asymmetrical fault phase [Phase 3]	0,85	3000 ± 20	3000	Pass
OV1- Symmetrical fault phase	1,25	100 ± 20	101	Pass
OV2- Symmetrical fault phase	1,20	5000 ± 20	5000	Pass
OV3- Symmetrical fault phase	1,15	60000 ± 20	60000	Pass

Graph of FRT test one

Test result:

List of tests	Residual amplitude of phase-to-phase voltage $\left[\mathrm{p} . \mathrm{u} . \mathrm{U}_{\mathrm{n}}\right]$	Duration limit [ms]	Duration $[\mathrm{ms}]$	Result

Test conditions:

Voltage simulator fall and rise time: < 20ms
Used sample rate: 10 kHz

Note:

The test method refer to VDE V 0124-100:2019-02 (Draft), clause 5.8.3.
The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

Test 1: 1.D.1- Asymmetrical fault phase [Phase 1]; $P=20 \% \pm 5 \% P_{n}$

Test 1: 1.D.1- Asymmetrical fault phase [Phase 2]; $P=20 \% \pm 5 \% P_{n}$

Test 1: 1.D.1- Asymmetrical fault phase [Phase 3]; $P=20 \% \pm 5 \% P_{n}$

Test 2: 2.D.1- Asymmetrical fault phase [Phase 1]; $\mathbf{P = 2 0 \%} \pm 5 \% \mathbf{P}_{\mathrm{n}}$

Test 2: 2.D.1- Asymmetrical fault phase [Phase 2]; $\mathrm{P}=\mathbf{2 0 \%} \pm 5 \% \mathrm{P}_{\mathrm{n}}$

Test 2: 2.D.1- Asymmetrical fault phase [Phase 3]; $P=20 \% \pm 5 \% P_{n}$

Test 3: 3.D.1- Asymmetrical fault phase [Phase 1]; $\mathbf{P = 2 0 \% ~} \pm 5 \% \mathbf{P}_{\mathrm{n}}$

Test 3: 3.D.1- Asymmetrical fault phase [Phase 2]; $P=20 \% \pm 5 \% P_{n}$

Test 3: 3.D.1- Asymmetrical fault phase [Phase 3]; $P=20 \% \pm 5 \% P_{n}$

Test 1: 1.D.2- Asymmetrical fault phase [Phase 1]; $P=100 \% \pm 5 \% P_{n}$

Test 1: 1.D.2- Asymmetrical fault phase [Phase 2]; $\mathrm{P}=100 \% \pm 5 \% \mathrm{P}_{\mathrm{n}}$

Test 1: 1.D.2- Asymmetrical fault phase [Phase 3]; $\mathbf{P}=\mathbf{1 0 0} \% \pm 5 \% \mathrm{P}_{\mathrm{n}}$

Test 2: 2.D.2- Asymmetrical fault phase [Phase 1]; $\mathrm{P}=100 \% \pm 5 \% \mathrm{P}_{\mathrm{n}}$

Test 2: 2.D.2- Asymmetrical fault phase [Phase 2]; $\mathbf{P}=\mathbf{1 0 0} \% \pm 5 \% \mathrm{P}_{\mathrm{n}}$

Test 2: 2.D.2- Asymmetrical fault phase [Phase 3]; $\mathrm{P}=100 \% \pm 5 \% \mathrm{P}_{\mathrm{n}}$

Test 3: 3.D.2- Asymmetrical fault phase [Phase 1]; $P=100 \% \pm 5 \% P_{n}$

Test 3: 3.D.2- Asymmetrical fault phase [Phase 2]; $\mathrm{P}=100 \% \pm 5 \% \mathrm{P}_{\mathrm{n}}$

Test 3: 3.D.2- Asymmetrical fault phase [Phase 3]; $\mathbf{P}=\mathbf{1 0 0} \% \pm 5 \% \mathrm{P}_{\mathrm{n}}$

Test OV1- Symmetrical fault phase; $\mathbf{P = 1 0 0 \% ~} \pm 5 \% \mathrm{P}_{\mathrm{n}}$

Test OV2- Symmetrical fault phase; $P=100 \% \pm 5 \% P_{n}$

Test OV3- Symmetrical fault phase; $P=100 \% \pm 5 \% P_{n}$

EN 50549-1:2019: Active response to frequency deviation

Clause	Test requirement	Test procedure according standard	Result
4.6 .1	Power response to over-frequency	VDE V 0124-100:2019-02 (Draft), clause 5.4 .4	\mathbf{P}
4.6 .2	Power response to under-frequency	VDE V 0124-100:2019-02 (Draft), clause 5.4 .6	N/A

4.6.1 Power response to over-frequency							P
Test result:							
1-min mean value [Hz]:	a) 50,00	b) 50,25	c) 50,70	d) 51,40	e) 50,70	f) 50,25	g) 50,00
1. Measurement a) to g): Active power output $=100 \% P_{E_{\max }}$ $\mathrm{s}=5 \%$ ($40 \% \mathrm{P}_{\text {ref }} / \mathrm{Hz}$), threshold frequency for start/return: $50,2 \mathrm{~Hz}$							
Frequency [Hz]:	50,00	50,25	50,70	51,40	50,70	50,25	50,00
PM [kW]:	N/A	2,946	2,404	1,562	2,404	2,946	N/A
$\mathrm{P}_{\text {E60 }}[\mathrm{kW}]$:	3,006	2,949	2,391	1,561	2,391	2,949	3,007
$\Delta \mathrm{P}_{\text {E60 }} / \mathrm{P}_{\mathrm{M}}[\%]$:	N/A	0,11	-0,46	-0,06	-0,46	0,12	N/A

Test result:

1-min mean value [Hz]:	a) 50,00	b) 50,25	c) 50,70	d) 51,40	e) 50,70	f) 50,25	g) 50,00

2. Measurement a) to g): Active power output 60% after freezing $=100 \% P_{\text {Emax }}$
$\mathrm{s}=5 \%\left(40 \% \mathrm{P}_{\text {ref }} / \mathrm{Hz}\right)$, threshold frequency for start/return: 50,2 Hz

Frequency [Hz$]$:	50,00	50,25	50,70	51,40	50,70	50,25	50,00
PM [kW]:	N/A	1,736	1,417	0,922	1,417	1,736	N/A
$\mathrm{P}_{\text {E60 }}[\mathrm{kW}]$:	1,808	1,771	1,433	0,942	1,432	1,772	3,008
$\Delta \mathrm{P}_{\text {E60 }} / \mathrm{Pm}_{\text {m }}[\%]$:	N/A	1,18	0,54	0,65	0,50	1,21	N/A
Limit $\Delta P / P_{1 \text { min }}$:	$\pm 10 \%$ of $P_{\text {Emax }}$						

Graph of Measurement 1.: Active power output $>80 \% P_{\text {Emax }}$

Graph of Measurement 2.:Active power output 40\% and 60\% after freezing $>80 \% \mathrm{P}_{\mathrm{n}}$

Graph of power gradient:

Test:

The test is conducted for two powers. First, the test must start at a power $=100 \%$ PEmax ("Measurement 1"), and in a second test, for a power 60\% PEmax ("Measurement 2"). In the second test, after freezing of the P_{m}, the available active power output must be increased to a value $=100 \% \mathrm{P}_{\text {Emax }}$, and after the network frequency of $50,2 \mathrm{~Hz}$ is fallen below, the rise of the active power gradient must be recorded.

Point g) must be held until the micro-generator is again feeding in with the active power output available.

Assessment criterion:

For $f=50,2 \mathrm{~Hz}$, the value of the P_{m} active power currently being generated is "frozen".
a) For adjustable micro-generators when:

1) the active power reduces between measuring points b) and f) given above with the set gradient Рм per Hz for a increasing frequency (or rises for a frequency decreasing again).
2) the maximum active power gradient occurring in point is less than the configured maximum active power per minute
3) the reaction value of the setpoint determined by the gradient characteristic curve does not differ from $P_{\text {Emax }}$ by more than $\pm 10 \%$.
4) the settling time is equal or below 2 s with an intentional delay set to zero
b) For partly adjustable micro-generators
5) when they behave as in a) within their adjustment range, and
6) when, outside the adjustable range, the power fed in on leaving the adjustment range remains constant until shutdown. Shutdown must be no later than at $51,5 \mathrm{~Hz}$.

Note:

The test method refer to clause 5.4.4 of VDE V 0124-100:2019-02 (Draft).
The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

EN 50549-1:2019: Power response to voltage variations and voltage changes

Clause	Test requirement	Test procedure according standard	Result
4.7.2.2	Capabilities	--	P
4.7.2.3.2	Fix control modes ($\cos \varphi$ setpoint mode)	FGW TG3, Revision 25, clause 4.2.2	P
4.7.2.3.2	Fix control modes (Q setpoint mode, $48,43 \%$)	EN 50438:2013, Annex D.3.4.2.1	P
4.7.2.2	Q Response time	CEI 0-21:2019-04, Annex B.1.2.4	P
4.7.2.3.3	Voltage related control modes (Q (U) controls)	VDE AR 4105:2018-05, clause 5.7.2.4.	P
4.7.2.3.4	Power related control modes $(\cos \varphi(P)$ curve)	VDE V 0124-100:2012, clause 5.3.6.4	P
4.7.3	Voltage related active power reduction ($\mathrm{P}(\mathrm{U})$ function)	CEI 0-21:2019-04, Annex B.1.3.1	P

4.7.2	Voltage support by reactive power	
4.7.2.2	Capabilities	P
4.7.2.3.2	Fix control modes $(\cos \varphi$ setpoint mode)	

Test result:

PF = 0,8 / Inducitive reactive power supply				
Rating power [\%]	Active power [kW]	Reactive power [kVar]	Power factor $[\cos \varphi]$	Voltage [V]
5\%	0,148	-0,108	0,8074	229,60
10\%	0,284	-0,212	0,8009	229,74
20\%	0,589	-0,429	0,8082	229,90
30\%	0,890	-0,658	0,8042	229,71
40\%	1,193	-0,886	0,8027	229,42
50\%	1,491	-1,111	0,8018	229,59
60\%	1,790	-1,336	0,8014	229,77
70\%	2,087	-1,561	0,8007	229,51
80\%	2,382	-1,784	0,8003	229,69
90\%	2,403	-1,813	0,7982	230,10
100\%	2,398	-1,814	0,7974	230,10
PF = 0,8 / Capacitive reactive power supply				
Rating power [\%]	Active power [kW]	Reactive power [kVar]	Power factor $[\cos \varphi]$	Voltage [V]
5\%	0,148	0,114	0,7927	229,58
10\%	0,301	0,231	0,7932	229,70
20\%	0,593	0,456	0,7923	229,86
30\%	0,897	0,682	0,7962	230,04
40\%	1,199	0,907	0,7975	230,23
50\%	1,499	1,132	0,7981	230,46
60\%	1,798	1,355	0,7987	230,66
70\%	2,096	1,576	0,7992	230,56
80\%	2,392	1,796	0,7996	230,47
90\%	2,415	1,823	0,7980	229,44
100\%	2,411	1,822	0,7977	229,42

Cos phi=1 no reactive power supply					
Rating power $[\%]$	Active power $[\mathrm{kW}]$	Reactive power $[\mathrm{kVar}]$	Power factor $[\cos \varphi]$	Voltage $[\mathrm{V}]$	
5%	0,148	0,011	0,9971	229,56	
10%	0,288	0,018	0,9980	229,71	
20%	0,594	0,021	0,9994	229,45	
30%	0,901	0,020	0,9998	229,62	
40%	1,206	0,019	0,9999	229,80	
50%	1,509	0,018	0,9999	229,51	
60%	1,812	0,017	0,9999	229,69	
70%	2,114	0,016	0,9999	229,86	
80%	2,415	0,015	0,9999	229,42	
90%	2,711	0,014	0,9999	229,56	
100%	3,010	0,012	0,9999	229,74	

Assessment criterion:
The power factor resulting in each of the measurement points between 20% and 90% of the nominal power is equal to or lower than 0,90 both in over excited and under excited operation.

The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

Diagram

4.7.2	Voltage support by reactive power	
4.7.2.2	Capabilities	P
4.7.2.3.2	Fix control modes (Q setpoint mode, 48,43\%)	

Test result:

Inducitive reactive power supply					
Rating power $[\%]$	Active power $[\mathrm{kW}]$	Reactive power $[\mathrm{kVar}]$	Power factor $[\cos \varphi]$	Voltage $[\mathrm{V}]$	
5%	0,156	$-1,816$	0,0859	229,63	
10%	0,293	$-1,807$	0,1598	229,70	
20%	0,556	$-1,832$	0,2904	229,44	
30%	0,863	$-1,830$	0,4265	229,63	
40%	1,171	$-1,830$	0,5389	229,21	
50%	1,478	$-1,811$	0,6320	229,39	
60%	1,780	$-1,812$	0,7007	230,02	
70%	2,083	$-1,812$	0,7544	230,21	
80%	2,384	$-1,812$	0,7961	230,39	
90%	2,403	$-1,815$	0,7979	230,41	
100%	2,397	$-1,815$	0,7971	230,35	

Capacitive reactive power supply					
Rating power $[\%]$	Active power $[\mathrm{kW}]$	Reactive power $[\mathrm{kVar}]$	Power factor $[\cos \varphi]$	Voltage $[\mathrm{V}]$	
5%	0,154	1,818	0,0841	229,16	
10%	0,298	1,827	0,1607	229,09	
20%	0,586	1,820	0,3072	229,48	
30%	0,869	1,821	0,4303	229,72	
40%	1,176	1,819	0,5429	230,05	
50%	1,481	1,831	0,6289	230,42	
60%	1,786	1,831	0,6982	230,61	
70%	2,093	1,828	0,7531	230,14	
80%	2,389	1,829	0,7940	230,97	
90%	2,415	1,823	0,7980	230,99	
100%	2,410	1,823	0,7975	230,99	

Cos phi=1 no reactive power supply				
Rating power $[\%]$	Active power $[\mathrm{kW}]$	Reactive power $[\mathrm{kVar}]$	Power factor $[\cos \varphi]$	Voltage $[\mathrm{V}]$
5%	0,148	0,011	0,9971	229,56
10%	0,288	0,018	0,9980	229,71
20%	0,594	0,021	0,9994	229,45
30%	0,901	0,020	0,9998	229,62
40%	1,206	0,019	0,9999	229,80
50%	1,509	0,018	0,9999	229,51
60%	1,812	0,017	0,9999	229,69
70%	2,114	0,016	0,9999	229,86
80%	2,415	0,015	0,9999	229,42
90%	2,711	0,014	0,9999	229,56
100%	3,010	0,012	0,9999	229,74

Assessment criterion:

The power factor resulting in each of the measurement points between 20% and 90% of the nominal power is equal to or lower than 0,90 both in over excited and under excited operation,

The test method refer to clause CEI0-21 / EN 50438:2013, Annex D, 3, 4,2,1,
Generating plants must meet the reactive power requirement regardless of the number of feeding phases under normal steady-state operating conditions in the voltage tolerance band $+10 \% U_{n}$ and $-15 \% U_{n}$.

The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

Diagram

4.7.2.2	Capabilities Q Response time		P
Reaction time			
Test result:			
		Time	Result
1.	Reaction time Q=0 to Qmin (50\% test)	3,2s	P
2.	Reaction time Qmin to Qmax (50% test)	7,6 s	P
3.	Reaction time Qmax to Q=0 (50% test)	4,0 s	P
4.	Reaction time Q=0 to Qmin (100% test)	5,4 s	P
5.	Reaction time Qmin to Qmax (100\% test)	8,4 s	P
6.	Reaction time Qmax to Q=0 (100\% test)	4,0 s	P

Test result:
Graph 50\%Pn

Assessment criterion:

DC source should be set to 50% (test1) and 100% (test2) output power micro-generator.
Starting with $Q=0$ then $Q \min \leq-0,4843$ Pn to to $Q \max \geq 0,4843$ Pn, and then back to $Q=0$ in doing so each point must be kept for at least 2 minute.

The total tolerance is $\Delta \mathrm{Q} \leq \pm 5,0 \%$ of Pn or $\Delta \cos \varphi \leq \pm 0,01$
The maximum response time is 10 s .
The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

4.7.2.2 Capabilities

4.7.2.3.3 Voltage related control modes (Q (U) controls)

The validation of the $Q(U)$ regulation according to VDE-AR-N 4105: 2018-05, 5.7.2.4 is divided into two partial tests, so that on the one hand the accuracy and on the other hand the dynamics of the $Q(U)$ control is checked. For all inverter-coupled systems, only the inverter must be tested.

Test result:

Test of the reactive power-voltage characteristic $Q(U)$

$\operatorname{Vac}\left[\% \mathrm{U}_{\mathrm{n}}\right.$] Set point	Vac_L1 [V] measured	P [kW] measured	Q [kVar] measured	Q [kVar] expected	$\begin{gathered} \Delta \mathrm{Q} \\ {\left[\% \mathrm{P}_{\mathrm{Emax}}\right]} \end{gathered}$
100	230,12	3,004	0,013	0,000	0,426
99	227,75	3,003	0,012	0,000	0,389
98	225,69	3,002	0,010	0,000	0,348
97	223,18	3,001	0,011	0,000	0,373
96	220,60	2,999	0,433	0,450	-0,568
95	218,44	2,890	0,865	0,900	-1,173
94	216,01	2,681	1,342	1,350	-0,261
93	213,74	2,382	1,797	1,800	-0,112
92	211,47	2,326	1,821	1,800	0,684
91	209,39	2,289	1,823	1,800	0,770
90	207,07	2,249	1,822	1,800	0,730
91	209,38	2,288	1,823	1,800	0,774
92	211,63	2,329	1,821	1,800	0,691
93	213,74	2,383	1,796	1,800	-0,133
94	216,00	2,682	1,340	1,350	-0,333
95	218,36	2,887	0,875	0,900	-0,828
96	220,59	2,999	0,433	0,450	-0,579
97	223,17	3,001	0,011	0,000	0,381
98	225,69	3,002	0,010	0,000	0,348
99	227,76	3,005	0,011	0,000	0,377
100	230,14	3,004	0,014	0,000	0,458
101	232,26	3,008	0,013	0,000	0,439
102	234,63	3,009	0,012	0,000	0,414
103	236,92	3,010	-0,044	0,000	-1,479
104	238,99	3,001	-0,453	-0,450	-0,095
105	241,33	2,882	-0,914	-0,900	-0,454
106	243,60	2,690	-1,364	-1,350	-0,453
107	246,11	2,407	-1,809	-1,800	-0,315
108	248,34	2,408	-1,809	-1,800	-0,309

109	250,72	2,410	$-1,809$	$-1,800$	$-0,290$
110	253,10	2,411	$-1,809$	$-1,800$	$-0,289$
109	250,73	2,409	$-1,808$	$-1,800$	$-0,282$
108	248,36	2,408	$-1,809$	$-1,800$	$-0,289$
107	246,13	2,407	$-1,810$	$-1,800$	$-0,319$
106	243,62	2,689	$-1,365$	$-1,350$	$-0,511$
105	241,35	2,879	$-0,922$	$-0,900$	$-0,736$
104	239,01	3,000	$-0,455$	$-0,450$	$-0,172$
103	236,94	3,010	$-0,057$	0,000	$-1,891$
102	234,64	3,009	0,014	0,000	0,464
101	232,27	3,007	0,013	0,000	0,423
100	230,20	3,006	0,013	0,000	0,433
Limit $\Delta \mathbf{Q}:$		$\pm 4 \% \mathrm{P}_{\mathrm{Emax}}$			

Graph of characteristic $\mathbf{Q}(\mathrm{U})$:

Test:

The verification of the accuracy of the $Q(U)$ control of the reactive power-voltage characteristic Un shown in VDE-AR-N 4105: 2018-11, 5.7.2.4, Figure 7 is effected by a slow variation of the line voltage U_{n} in the range $90 \% U_{n}$ to $110 \% U_{n}$. Depending on the type of EZE (single- or three-phase), the voltage changes must be carried out simultaneously or symmetrically on all phases.
a) In order to check the stationary accuracy, the permissible voltage range shall be passed through within steps, with a step size of $1 \% U_{n}$, but not greater than $2 \% U_{n}$.

1. Pass the voltage range from $100 \% U_{n}$ down to the under voltage range to $90 \% U_{n}$.
2. Pass the voltage range from $90 \% U_{n}$ up to the over voltage range to $110 \% U_{n}$.
3. Pass the voltage range from $110 \% U_{n}$ down to the Nominal Voltage U_{n}.

The procedure is analogous to Figure 3 in Section 5.4.3.2.

The voltages are to be set with a maximum deviation of $0.25 \% U_{n}$.

Assessment criterion:

In order to pass the $Q(U)$ accuracy test, the measured stationary value pairs UPGU and Qpgu, under taking account to the correct sign in the consumer metering system, must be within VDE-AR-N 4105: 2018-11, in 5.7.2.4, Figure 7 Q (U) shown characteristic. The stationary value pairs UpGu and Qpgu are determined by averaging over 30 seconds at the end of the respective measuring section analogously to Chapter 5.4.3.2. The permissible deviations are with the maximum measuring error of the voltage of $1 \% U_{n}$ stated in VDE-ARN 4105: 2018-11 and a setting accuracy of 4\% P PMax at

$$
Q_{E Z E, t o l}= \pm\left(0.01 \cdot \mathrm{U}_{\mathrm{N}, \mathrm{Y}} \cdot \mathrm{k}_{\mathrm{QU}}+0.04 \cdot P_{E M a x}\right)= \pm 0,25 \cdot P_{E M a x} \cdot\left(\sin \left(\arccos \left(\varphi_{\min }\right)\right)+0.16\right)
$$

The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

| Test of the dynamics of the Q (U) regulation | | P | |
| :---: | :---: | :---: | :---: | :---: |
| Voltage jump Vac [\% U_{n}] | Q [kVar] measured | Q [\%Qmax] measured | T=3Tmeasured |
| | $-1,536$ | $-85,35$ | $6,6 \mathrm{~s}$ |
| | $-1,536$ | $-85,35$ | $6,8 \mathrm{~s}$ |
| | $-1,538$ | $-85,42$ | $6,6 \mathrm{~s}$ |
| 100 to 93,6 | 1,519 | 84,37 | $7,8 \mathrm{~s}$ |
| | 1,520 | 84,45 | $7,8 \mathrm{~s}$ |

Note:

The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

Graph of $100 \% U_{n}$ to $\mathbf{1 0 6 , 4 \%} U_{n}$: Test 1

Graph of $\mathbf{1 0 0 \%} \mathrm{U}_{\mathrm{n}}$ to $\mathbf{1 0 6 , 4 \%} \mathrm{U}_{\mathrm{n}}$: Test 2

Graph of $\mathbf{1 0 0 \%} \mathrm{U}_{\mathrm{n}}$ to $\mathbf{1 0 6 , 4 \%} \mathrm{U}_{\mathrm{n}}$: Test 3

Graph of $100 \% \mathrm{U}_{\mathrm{n}}$ to $93,6 \% \mathrm{U}_{\mathrm{n}}$: Test 1

Graph of $100 \% U_{n}$ to $93,6 \% U_{n}$: Test 2

Graph of $100 \% U_{n}$ to $93,6 \% U_{n}$: Test 3

4.7.2.2 Capabilities 4.7.2.3.4 Power related Control mode $(\cos \varphi(P)$ curve)										P
Test result:										
Test a):										
$\mathrm{P}_{\text {Emax }} / \mathrm{P}$ [\%]	10	20	30	40	50	60	70	80	90	100
30 s mean value	20\% to 100\% P $\mathrm{Emax}^{\text {max }}$									
U [V]:	N/A	229,52	229,71	229,90	230,10	230,31	230,49	230,69	230,88	230,88
$\mathrm{P}_{\mathrm{E} 30}[\mathrm{~kW}]$:	N/A	0,594	0,900	1,205	1,508	1,833	2,109	2,405	2,702	2,762
$\mathrm{P}_{\text {E30 }}$ of $\mathrm{P}_{\text {Emax }}$ [\%]:	N/A	19,80	30,00	40,17	50,27	61,10	70,28	80,17	90,06	92,08
QE30 [kVAr]:	N/A	0,021	0,020	0,019	0,018	-0,356	-0,593	-0,850	-1,125	-1,203
$\cos \varphi_{\text {Езо }}$:	N/A	0,9994	0,9997	0,9999	0,9999	0,9814	0,9627	0,9429	0,9231	0,9168
$\cos \varphi_{\text {setpoint }}$ of $\mathrm{P}_{\text {E } 30}$:	N/A	1,000	1,000	1,000	1,000	0,980	0,960	0,940	0,920	0,920
Limit $\cos \varphi_{\text {e }}$ \%					$\cos \varphi_{\text {setpo }}$	int $\pm 0,01$				
Test b):										
$\mathrm{P}_{\text {Emax }} / \mathrm{P}_{\mathrm{n}}$ [\%]		20			5	0			100	
30 s mean value	20\% to 50% to $100 \% \mathrm{P}_{\mathrm{Emax}}$									
U [V]:	230,32			230,88				231,54		
$\mathrm{P}_{\text {E30 }}$ [kW]:	0,599			1,512				2,763		
$\mathrm{P}_{\text {E }}$ 0 of $\mathrm{P}_{\text {Emax }}$ [\%]:	19,97			50,42				92,09		
Q Eзо [kVAr]: $^{\text {a }}$	0,022			0,019				-1,203		
$\cos \varphi_{\text {Е }}$ \%	0,9993			0,9999				0,9168		
$\cos \varphi_{\text {setpoint }}$ of $\mathrm{P}_{\text {E } 30}$:	1,000			1,000				0,920		
To[s]:	<1,0s					4,4s				
$\mathrm{P}_{\text {Emax }} / \mathrm{P}_{\mathrm{n}}$ [\%]	100			50				20		
30 s mean value	100\% to 50% to $20 \% \mathrm{P}_{\mathrm{Emax}}$									
U [V]:	231,09			230,29				229,74		
P езо $^{\text {[kW] }}$:	2,762			1,511				0,598		
$\mathrm{P}_{\text {езо }}$ [\%]:	92,08			50,35				19,94		
Q E30 [kVAr]: $^{\text {a }}$	-1,204			0,018				0,021		
$\cos \varphi_{\text {Е } 30}$:	0,9167			0,9999				0,9994		
$\cos \varphi_{\text {setpoint }}$ of $\mathrm{P}_{\text {ез }}$:	0,920			1,000				1,000		
To [s]:	5,4s					<1,0s				
Limit T_{0} [s]:	10 s									
Limit $\cos \varphi_{\text {e } 30}$:	$\cos \varphi_{\text {setpoint }} \pm 0,02$									

Graph of setting (T_{0}) time: Test b): $\mathbf{2 0 \%}$ to $\mathbf{5 0 \%}$ to $\mathbf{1 0 0 \%}$ to $\mathbf{5 0 \%}$ to $\mathbf{2 0 \%}$

Test:

Test 1: Using the standard characteristic curve increases the active power from 20% PEmax in increments of $10 \% \mathrm{Pemax}$ to $\mathrm{P}_{\text {Emax }}$, The test is carried out in reverse.
Test 2: Using the standard characteristic curve increases the active power from $20 \% \mathrm{P}_{\text {Emax }}$ to $50 \% \mathrm{P}_{\text {Emax }}$ and to $P_{\text {Emax, }}$, The test is carried out in reverse, After the PGU has settled, the end value reached is determined as a 30 s mean value.

*) Depending on $S_{\text {Amax }}$.

Assessment criterion:

Test 1: $\cos \varphi$ accuracy $\cos \varphi(\pm 0,01)$
Test 2: $\cos \varphi$ accuracy $\cos \varphi(\pm 0,02)$
For the test to be passed, the $\cos \varphi$ setpoint from the active power must be measured at the terminals of the PGU within a settling time of 10 s .

Note:

The test method refer to clause 5,3,6,4 of VDE V 0124-100:2012-07.
The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

4.7.3 Voltage related active power reduction (P(U) function)		P
Test result:		
Test:		
5-min mean value / $P /$ $P_{n}[\%]$	100\% to 20\%	
Settling time [s]:	$6 s$	
$\mathrm{P}_{\text {E60 }}$ [\%]:	19,7	
$\Delta \mathrm{P}_{\text {E60 }} / \mathrm{P}_{\text {Setpoint }}[\%]$ \%	20 \% or less of P	
Limit settling time:	600s	

Test:
a) Set the voltage to $2 \% \mathrm{Vn}$ lower than the activation threshold stated by the manufacturer.
b) Set the voltage to $112 \% \mathrm{Vn}$, The inverter now has to reduce its output power to value lower than $20 \% \mathrm{Pn}$ within 5 min .
c) Set the voltage back to $2 \% \mathrm{Vn}$ lower than the activation threshold, Check that the active power will return to the value consistent with the power available from the primary source or simulated.
The test had been performed on the model ASW1000S-S, the test results are valid for the ASW3000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

Assessment criterion:

for adjustable PGUs:

- no network disconnection
- the active power value does not exceed the setpoint of $20 \% \mathrm{P}_{\text {Emax }}$
- the setting time determind is equal or less than 600s

EN 50549-1:2019: Power quality

Clause	Test requirement	Test procedure according standard	Result
4,8	EMC and power quality	--	P
	Harmonic current emission	EN 61000-3-2, EN 61000-3-12	P
	Harmonic current emission	EN 61000-4-7	N/A
	Switching operations	IEC 61400-21	P
	Voltage fluctuation and flicker	EN 61000-3-3, EN 61000-3-11	P
	Flicker and voltage fluctuations	IEC 61400-21	P
	DC injection	EN 50438, Annex D,3,10	P
	Immunity to voltage dips and short interruptions	G59/3-4:2018-05, clause 13.8.4.5	P
	Unbalance	BDEW TG3, Revision 25, clause 4.3.5	N/A

4.8	EMC and power quality Harmonic current emission (EN 61000-3-2)			P
Test result:				
Watts [kW]		3,005		
Vrms [V]			230,34	
Arms [A]		13,057		
Frequency [Hz]		50,000		
THD40* (100\% output power)			2,098	
Harmonic order n	Current Magnitude [A] at 100% rated output power	\% of Fundamental	Phase	Harmonic Current Limits [A]
1st	13,023	100,000	Single-phase	-
2nd	0,074	0,722	Single-phase	1,080
3rd	0,078	0,660	Single-phase	2,300
4th	0,016	0,161	Single-phase	0,430
5th	0,072	0,579	Single-phase	1,140
6th	0,010	0,104	Single-phase	0,300
7th	0,017	0,154	Single-phase	0,770
8th	0,008	0,082	Single-phase	0,230
9th	0,083	0,652	Single-phase	0,400
10th	0,008	0,074	Single-phase	0,184
11th	0,070	0,551	Single-phase	0,330
12th	0,008	0,070	Single-phase	0,153
13th	0,055	0,433	Single-phase	0,210
14th	0,007	0,066	Single-phase	0,131
15th	0,043	0,337	Single-phase	0,150
16th	0,007	0,062	Single-phase	0,115
17th	0,028	0,219	Single-phase	0,132
18th	0,007	0,059	Single-phase	0,102
19th	0,018	0,143	Single-phase	0,118
20th	0,007	0,060	Single-phase	0,092
21th	0,013	0,110	Single-phase	0,107
22th	0,009	0,079	Single-phase	0,084
23th	0,015	0,119	Single-phase	0,098
24th	0,009	0,071	Single-phase	0,077
25th	0,010	0,086	Single-phase	0,090
26th	0,007	0,057	Single-phase	0,071
27th	0,009	0,077	Single-phase	0,083
28th	0,006	0,053	Single-phase	0,066
29th	0,010	0,078	Single-phase	0,078
30th	0,007	0,055	Single-phase	0,061
31th	0,009	0,076	Single-phase	0,073
32th	0,007	0,058	Single-phase	0,058
33th	0,009	0,075	Single-phase	0,680
34th	0,007	0,057	Single-phase	0,054
35th	0,009	0,072	Single-phase	0,064
36th	0,008	0,065	Single-phase	0,051
37th	0,011	0,086	Single-phase	0,061
38th	0,010	0,082	Single-phase	0,048
39th	0,013	0,103	Single-phase	0,058
40th	0,008	0,064	Single-phase	0,046

Note:

The tests should be based on the limits of the EN61000-3-2 for less than 16A and on EN 61000-3-12 for more than 16A.
The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

$4.8 \quad$ EMC and power quality Switching operation (Refer IEC 61400-21)				P
Test result:				
Max. number of switching operations, N_{10}	10			
Max. number of switching operations, N_{120}	120			
Case of switching operation	Cut-in at $9 \% \mathrm{P}_{\text {Emax }}$			
Grid impedance angle, Ψ_{k}	30°	50°	70°	85°
Flicker step factor, $\mathrm{k}_{\mathrm{f}}\left(\Psi_{\mathrm{k}}\right)$	0,061	0,039	0,032	0,030
Voltage change factor, $\left.\mathrm{ku}^{(} \Psi_{\mathrm{k}}\right)$	1,519	1,553	1,581	1,505
Maximum inrush current factor kimax	0,074			
Case of switching operation	Cut-in at $100 \% \mathrm{P}_{\text {Emax }}$			
Grid impedance angle, ψ_{k}	30°	50°	70°	85°
Flicker step factor, $\mathrm{k}_{\mathrm{f}}\left(\psi_{\mathrm{k}}\right)$	0,341	0,222	0,181	0,170
Voltage change factor, $\left.\mathrm{ku}^{(} \Psi_{\mathrm{k}}\right)$	4,125	4,087	4,163	4,111
Maximum inrush current factor kimax	0,571			
Case of switching operation	Service disconnection at rated power			
Grid impedance angle, Ψ_{k}	30°	50°	70°	85°
Flicker step factor, $\mathrm{k}_{\mathrm{f}}\left(\Psi_{\mathrm{k}}\right)$	0,685	0,443	0,359	0,339
Voltage change factor, $\left.\mathrm{ku}^{(} \Psi_{\mathrm{k}}\right)$	4,353	4,511	4,411	4,334
Maximum inrush current factor kimax	0,569			
Worst case over all switching operations, $\mathrm{k}_{\text {imax }}$	0,571			
Note: $S_{k, \text { fic }} / S_{n}$ in the fictitious grid was set to: 63. The test had been performed on the model ASW1000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.				

Diagram of measured voltage, current, apparent active and reactive power at cut in at $9 \% \mathrm{P}_{\text {Emax }}$

Diagram of measured voltage, current, apparent active and reactive power at cut in at $100 \% \mathrm{P}_{\text {Emax }}$

Diagram of measured voltage, current, apparent active and reactive power at service disconnection

Note:

*The stationary deviance of dc\% is more relevant than the dynamic deviance of dmax at starting and stopping, Mains Impedance according EN61000-3-11:
$R \max =0,24 \Omega$; jXmax $=0,15 \Omega @ 50 H z(|Z \max |=0,283 / 0,4717 \Omega$) for single phase inverter use also $R_{n}=0,16 \Omega ; j X_{n}=0,1 \Omega$.
Calculation of the maximum permissible grid impedance at the point of common coupling based on dc:
$\mathbf{Z}_{\text {max }}=\mathbf{Z}_{\text {ref }}{ }^{*} \mathbf{3 , 3 \%} / \mathbf{d}_{\mathrm{c}}\left(\mathbf{P}_{\mathrm{n}}\right)$.
The tests should be based on the limits of the EN 61000-3-3 for less than 16A and on EN 61000-3-11 for more than 16A.

The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

$\begin{array}{ll}\text { 4.8 } & \begin{array}{l}\text { EMC and power quality } \\ \text { Flicker and voltage fluctuations }\end{array} \\ & \end{array}$										P
Method: Measurement and evaluation was carried out according to the procedure in IEC 61400-21.										
Test result:										
Grid impedance angle, Ψ_{k}			30°		50°		70°			
Operating point, $\mathrm{Pa}_{\mathrm{a}} \mathrm{P}_{\text {Emax }}[\%]$			Flicker coefficient, $\mathrm{c}\left(\Psi_{\mathrm{k}}\right)$							
0			4,290	2,800			2,283		2,153	
10			4,290	2,800			2,283		2,153	
20			4,290	2,800			2,283		2,153	
30			4,290	2,800			2,283		2,153	
40			4,290	2,800			2,283		2,153	
50			4,290	2,800			2,283		2,153	
60			4,290	2,800			2,283		2,153	
70			4,290	2,800			2,283		2,153	
80			4,290	2,800			2,283		2,153	
90			4,290	2,800			2,283		2,153	
100			4,290	2,800			2,283		2,153	
Max. Flicker coefficient, $\mathrm{c}(\psi \mathrm{k})$			4,290	2,800			2,283		2,153	
Max. Short-term flicker, Pst			0,068	0,044			0,036		0,034	
Reactive power setpoint during testing [kVar]				0						
P [\%PEmax]	0	10	20 30	40	50	60	70	80	90	100
Number of data sets	1	1	1	1	1	1	1	1	1	1
Note:										
The table entries are worst case values.										
$S_{k, \text { fic }} / S_{n}$ in the fictitious grid was set to: 63.										
The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.										

Maximum Flicker coefficients $\mathrm{c}\left(\Psi_{\mathrm{k}}\right)$ vs. power bins

Note:

Test method and setting value refer Annex D.3.10 of EN 50438:2013.
Testing must be performed according to WI 10.4.-03.doc rev D. The internal temperature of the EUT must be stabilized, No temperature drift of more than 2K within 1 hour is allowed.
The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

4，8 Immunity to voltage dips and short interruptions					P
For a directly coupled SSEG			For a Inverter SSEG		
Parameter	Symbol	Value	Time after fault	Volts	Amps
Peak Short Circuit current	$1 p$	N／A	20 ms	29，80	3，393
Initial Value of aperiodic current	A	N／A	100ms	30，10	4，094
Initial symmetrical short－circuit current＊	l_{k}	N／A	250ms	30，59	7，819
Decaying（aperiodic） component of short circuit current＊	idc	N／A	500ms	N／A	N／A
Reactance／Resistance Ratio of source＊	X／R	N／A	Time to trip	0，522	In second
Diagram					
			Wununuwnuy	WWMWM	
Note： For rotating machines and linea current as seen at the Generating ＊Values for these parameters s interpolation of the plot． The test had been performed on ASW1500S－S，ASW2000S－S si	iston ma Unit term uld be provic he model it is iden	ines the als． ided wh SW3000 cal in ha	st should produc the short circuit S，the test result ware and softwa	$0 s-2 s \text { plo }$ ation is valid for	hort circuit ong to ena 1000S-S,

EN 50549-1:2019: Interface protection

Clause	Test requirement	Test procedure according standard	Result
4.9 .3	Requirements on voltage and frequency protection	CEI 0-21:2019-04, Annex A.3.1 to A.3.4	P
$4,9,3,1$	Undervoltage protection	EN 50438, Annex D.2.3	P
	Overvoltage protection	EN 50438, Annex D.2.3	P
	Overvoltage 10 min mean protection	EN 50160	\mathbf{P}
	Underfrequency protection	EN 50438, Annex D.2.4	\mathbf{P}
	Overfrequency protection	EN 50438, Annex D.2.4	\mathbf{P}
4.9 .4 .2	Loss of Mains (LoM) detection	IEC 62116:2014	\mathbf{P}

4.9.3	Requirements on voltage and frequency protection Checklist								P
Several points to check									
Clause 4.9.3.1 to 4.9.3.6	All thresholds must be adjustable								P
Voltage values									
Threshold	Stage 1 [27 <]				Stage 2 [27 <<]				
	Operate voltage		Operate time		Operate voltage		Operate time		
Range	0,2-1,0 Un		0,1-100s		0,2-1,0 Un		0,1-5s		
Steps	0,01 Un		0,1 s		0,01 Un		0,05s		
Threshold	Stage 1 [59 >]			Stage 2 [59 >>]		Overvoltage 10 min mean protection			
	Operate voltage	Operate time		Operate voltage	Operate time	Operate voltage		Operate time	
Range	1,0-1,2 U_{n}	0,1-100s		1,0-1,3 U_{n}	0,1-5s	1,0-1,15 Un		3s not adjustable	
Steps	$0,01 U_{n}$	0,1s		0,01 Un	0,05s	$0,01 U_{n}$			
Frequency values									
Threshold	Stage 1 [81 <]				Stage 2 [81<<]				
	Operate frequency		Operate time		Operate frequency		Operate time		
Range	$47,0-50,0 \mathrm{~Hz}$		0,1-100s		47,0-50,0Hz		0,1-5s		
Steps	$0,1 \mathrm{~Hz}$,1 s	$0,1 \mathrm{~Hz}$		0,05s		
Threshold	Stage 1 [81 >]				Stage 2 [81 >>]				
	Operate frequency		Operate time		Operate frequency		Operate time		
Range	$50,0-52,0 \mathrm{~Hz}$			-100s	50,0-52,0Hz		0,1-5s		
Steps	$0,1 \mathrm{~Hz}$, s	$0,1 \mathrm{~Hz}$		0,05s		
4.9.2.6	Insensitive against 40ms frequency transients, so that the unit will not trip								P
Note: The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.									

4.9.3 Requirements on voltage and frequency protection 4.9.3.1 General (Interface protection: Over/under voltage) (Setting value refer EN 50438 for default settings)				P
Test conditions		Output power: 3,0kW Frequency: $50+/-0,2 \mathrm{~Hz}$		
Limit [V]	Trip value [V]	Voltage step [V]	Disconnection time [s]	Limit [s]
$\begin{aligned} & \text { Stage } 1 \\ & 110 \% \text { of } U_{n} \\ & =253,0 \end{aligned}$	252,9	230 to 258	2,010	$\leq 3,0$ s
	252,9	230 to 258	2,010	
	252,9	230 to 258	2,015	
	252,9	230 to 258	2,010	
	252,9	230 to 258	2,010	
$\begin{gathered} \text { Stage } 2 \\ 115 \% \text { of } U_{n} \\ =264,5 \end{gathered}$	264,1	230 to 269	0,139	$0,1 \mathrm{~s} \leq \mathrm{t} \leq 0,2 \mathrm{~s}$
	264,1	230 to 269	0,121	
	264,1	230 to 269	0,139	
	264,1	230 to 269	0,139	
	264,1	230 to 269	0,140	
Stage 85% of U_{n} $=195,5$	195,3	230 to 190	1,298	$1,2 \mathrm{~s} \leq \mathrm{t} \leq 1,5 \mathrm{~s}$
	195,3	230 to 190	1,298	
	195,3	230 to 190	1,296	
	195,3	230 to 190	1,312	
	195,3	230 to 190	1,290	

Note:

The trip values were evaluated by varying the applied voltage from U_{n} down to $U_{\text {th-low }}-2 \%$ of U_{n} in steps of $0,5 \%$ of U_{n} for under-voltage testing as well as from U_{n} up to $U_{\text {th-high }}+2 \%$ of U_{n} in steps of $0,5 \%$ of U_{n} for overvoltage testing, Lower and upper threshold voltage shall not fall or rise below or above $2,3 \mathrm{~V}$ of the trip value itself, The disconnection time was measured by application of a negative voltage step from U_{n} to the operate value -5% of U_{n} as well as positive voltage step from U_{n} to the operate value $+5 \%$ of U_{n}.
The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

Scope pictures of the disconnection time

Over-voltage - Stage 1

Over-voltage - Stage 2

Under-voltage

$\begin{aligned} & 4.9 .3 \\ & 4.9 .3 .1 \end{aligned}$	Requirements on voltage and frequency protection General (Maximum voltage 10 min mean protection according to EN 50160) (Setting value refer EN 50438 for default settings)			
Setting values of the protection:		Trip value Setting [V]	253	
		Setting $\mathrm{T}_{\text {disconnection trip value }}[\mathrm{s}$]	600	
		Setting $\mathrm{T}_{\text {disconnection }}$ [ms]	200	
Test:				
		Disconnection time [s]	Limit [s]	
a)	The voltage is set to $100 \% U_{n}$ and held for 600 s , Thereafter the voltage is set to $112 \% U_{n}$, Disconnection must take place within 600 s .			
	Phase 1:	491 s	≤ 600 s	
	Phase 2:	N/A		
	Phase 3:	N/A		
b) P	The voltage is set to U_{n} for 600 s and then to $108 \% \mathrm{U}_{\mathrm{n}}$ for 600 s , No disconnection should take place			
	Phase 1:	No Disconnection	Disconnection should not take place,	
	Phase 2:	N/A		
	Phase 3:	N/A		
c)	The voltage is set to $106 \% U_{n}$ and held for 600 s , Thereafter the voltage is set to $114 \% U_{n}$, The disconnection should last for half the period as in Point a)*			
	Phase 1:	261 s	The disconnection time should about 50% of the value measur in a), *	
	Phase 2:	N/A		
	Phase 3:	N/A		
Test: a) This test serves as proof of the measurement accuracy and the maximum set time. b) This test serves as proof of the measurement accuracy. c) This test serves as proof of the correct formation of the 1 minute running mean value.				
Assessment criterion: The permitted tolerance between setting value and trip value of the voltage may not exceed ± 1 Limit values: Rise-in voltage protection $1,1 \mathrm{U}_{\mathrm{N}}$ after a max. 600 s , the switch off after 200 ms .				
Note: If only one integrated protection is used for the power generation systems, the value of the rise-in voltage protection of $1,1 U_{N}$ may not be changed. *If the setting value is set to 600 s , then the disconnection time can be in the range between 225 s and 375 s . The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.				

b) Voltage set to $108 \% \mathrm{U}_{\mathrm{n}}$:

c) Voltage set to $106 \% U_{n}$, thereafter $114 \% U_{n}$:

4.9.3 Requirements on voltage and frequency protection 4.9.3.1 General (Interface protection: Over/under frequency) (Setting value refer EN 50438 Default setting)				P
Test conditions	Output power: 3,0kW$\mathrm{U}_{\mathrm{n}}=230 \mathrm{Vac}$			
	Under-frequency		Over-frequency	
Parameter	Stage 1 Under-Frequency	Time	Stage 1 Over-Frequency	Time
Limit	$47,50 \mathrm{~Hz}$	$0,3 \leq \mathrm{t} \leq 0,5 \mathrm{~s}$	$51,50 \mathrm{~Hz}$	$0,3 \leq t \leq 0,5 \mathrm{~s}$
Trip value [Hz]	47,50		52,02	
	47,50		52,02	
	47,50		52,02	
	47,50		52,02	
	47,50		52,02	
Disconnection time [s]	$\begin{aligned} & 50,00 \mathrm{~Hz} \\ & \text { to } \\ & 47,40 \mathrm{~Hz} \end{aligned}$	0,410	$\begin{aligned} & 50,00 \mathrm{~Hz} \\ & \text { to } \\ & 52,10 \mathrm{~Hz} \end{aligned}$	0,395
		0,420		0,405
		0,435		0,405
		0,435		0,420
		0,435		0,420

Note:

For under-frequency testing the applied frequency is varied from f_{n} down to $f_{\text {th-low }}-0,1 \mathrm{~Hz}$ in steps of $0,025 \mathrm{~Hz}$ with a time duration per step exceeding the configured disconnection time, The operate value is the value of the applied frequency at switch the protection function trips and shall be within $f_{t h-l o w} \pm 0,05 \mathrm{~Hz}$.

For over-frequency testing the applied frequency is varied from f_{n} up to $f_{\text {th-high }}+0,1 \mathrm{~Hz}$ in steps of $0,025 \mathrm{~Hz}$ with a time duration per step exceeding the configured disconnection time, The operate value is the value of the applied frequency at which the protection function trips and shall be within $f_{t h-h i g h} \pm 0,05 \mathrm{~Hz}$.

The disconnection time was measured by applying a negative or positive frequency ramp from f_{n} to the operate value $-0,1 \mathrm{~Hz}$ or $+0,1 \mathrm{~Hz}, \mathrm{e}, \mathrm{g}$, from 50 Hz to $47,4 \mathrm{~Hz}$, The time elapsed between the application of the frequency ramp and the opening of the interface switch was calculated by the measured time minus the 2500 ms from $50,0 \mathrm{~Hz}$ to $47,5 \mathrm{~Hz}$.
The oscilloscope pictures below show the measured worst case disconnection times.
The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

Load imbalance (real, reactive load) for test condition A (EUT output = 100\%)										P
Test :										
Test conditions			$\begin{gathered} \text { Frequency: } 50+/-0,1 \mathrm{~Hz} \\ U_{N}=230+/-3 \mathrm{Vac} \\ \text { Distortion factor of chokes }<2 \% \\ \text { Quality }=1 \end{gathered}$							
Disconnection limit			2 s (IEC 62116)							
No	$\begin{aligned} & \text { PEUT }^{1)} \\ & \text { [\% of EUT } \\ & \text { rating] } \end{aligned}$	Reactive Ioad [\% of QL in 6,1,d) ${ }^{1)}$	$\begin{gathered} \mathrm{P}_{\mathrm{AC}}{ }^{2)} \\ {[\% \text { of }} \\ \text { nominal] } \end{gathered}$	$\begin{gathered} \mathrm{QAC}^{3)} \\ {[\% \text { of }} \\ \text { nominal] } \end{gathered}$	$\begin{gathered} \mathrm{IAC}^{4)} \\ {[\mathrm{A}]} \end{gathered}$	Peut [kW per phase]	VDC [V]	Qf	Run on Time [ms]	Remarks 5)
1	100	100	0	0	0,020	3,000	368	0,999	326	BL
2	100	100	-5	-5	0,671	3,000	368	1,025	223	IB
3	100	100	-5	0	0,642	3,000	368	1,052	277	IB
4	100	100	-5	+5	0,576	3,000	368	1,078	314	IB
5	100	100	0	-5	0,021	3,000	368	0,974	223	IB
6	100	100	0	+5	0,111	3,000	368	1,024	308	IB
7	100	100	+5	-5	0,674	3,000	368	0,928	218	IB
8	100	100	+5	0	0,700	3,000	368	0,952	306	IB
9	100	100	+5	+5	0,759	3,000	368	0,975	317	IB
Parameter at 0\% per phase			$\mathrm{L}=33,68 \mathrm{mH}$			$R=10,58 \Omega$		$\mathrm{C}=300,86 \mu \mathrm{~F}$		

Note:

RLC is adjusted to min. +/-1\% of the inverter rated output power

1) Peut: EUT output power.
2) Pac: Real power flow at S 1 in Figure 1. Positive means power from EUT to utility, Nominal is the 0% test condition value.
${ }^{3)}$ Qac: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility, Nominal is the 0 \% test condition value.
3) Fundamental of $I_{A C}$ when RLC is adjusted.
${ }^{5)}$ BL: Balance condition, IB: Imbalance condition.
Condition A:
EUT output power $\mathrm{P}_{\text {EUT }}=$ Maximum ${ }^{6}$
EUT input voltage ${ }^{6)}=>75 \%$ of rated input voltage range
${ }^{6)}$ Maximum EUT output power condition should be achieved using the maximum allowable input power, Actual output power may exceed nominal rated output.
${ }^{7}$) Based on EUT rated input operating range, For example, If range is between X volts and Y volts, 75% of range $=X+0,75 \times(Y-X), Y$ shall not exceed $0,8 \times$ EUT maximum system voltage (i,e,, maximum allowable array open circuit voltage), In any case, the EUT should not be operated outside of its allowable input voltage range.
The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

Load imbalance (reactive load) for test condition B (EUT output = 50 \% - 66 \%)										P
Test :										
Test conditions			$\begin{gathered} \text { Frequency: } 50+/-0,1 \mathrm{~Hz} \\ U_{N}=230+/-3 \mathrm{Vac} \\ \text { Distortion factor of chokes }<2 \% \\ \text { Quality }=1 \end{gathered}$							
Disconnection limit			2s (IEC 62116)							
No	$\begin{aligned} & \text { Peut }{ }^{1)} \\ & \text { [\% of EUT } \\ & \text { rating] } \end{aligned}$	Reactive load [\% of QL in 6,1,d) ${ }^{1)}$	$\begin{gathered} \mathrm{P}_{\mathrm{AC}}{ }^{2)} \\ {[\% \text { of }} \\ \text { nominal] } \end{gathered}$	$\begin{gathered} \mathrm{QAC}^{3)} \\ {[\% \text { of }} \\ \text { nominal] } \end{gathered}$	$\begin{gathered} \mathrm{IAC}^{4)} \\ {[\mathrm{A}]} \end{gathered}$	Peut [kW per phase]	VDC [V]	Qf	Run on Time [ms]	Remarks 5)
1	66	66	0	-5	0,026	1,980	272	0,975	212	IB
2	66	66	0	-4	0,024	1,980	272	0,980	231	IB
3	66	66	0	-3	0,022	1,980	272	0,985	238	IB
4	66	66	0	-2	0,022	1,980	272	0,990	242	IB
5	66	66	0	-1	0,022	1,980	272	0,995	287	IB
6	66	66	0	0	0,022	1,980	272	1,000	432	BL
7	66	66	0	+1	0,026	1,980	272	1,005	418	IB
8	66	66	0	+2	0,029	1,980	272	1,010	376	IB
9	66	66	0	+3	0,033	1,980	272	1,015	361	IB
10	66	66	0	+4	0,038	1,980	272	1,020	318	IB
11	66	66	0	+5	0,043	1,980	272	1,025	300	IB
Parameter at 0\% per phase			$\mathrm{L}=51,27 \mathrm{mH}$			$R=16,11 \Omega$		$\mathrm{C}=197,60 \mu \mathrm{~F}$		

Note:

RLC is adjusted to min. +/-1\% of the inverter rated output power

1) Peut: EUT output power.
2) ${ }^{\text {2 }}$ Ac: Real power flow at S 1 in Figure 1, Positive means power from EUT to utility, Nominal is the 0% test condition value.
 test condition value.
3) Fundamental of l_{AC} when RLC is adjusted.
${ }^{5)}$ BL: Balance condition, IB: Imbalance condition.
Condition B:
EUT output power $P_{\text {EUT }}=50 \%-66 \%$ of maximum
EUT input voltage ${ }^{6)}=50 \%$ of rated input voltage range, $\pm 10 \%$
${ }^{6)}$ Based on EUT rated input operating range, For example, If range is between X volts and Y volts, 50% of range $=\mathrm{X}+0,5 \times(\mathrm{Y}-\mathrm{X})$, Y shall not exceed $0,8 \times$ EUT maximum system voltage (i,e,, maximum allowable array open circuit voltage), In any case, the EUT should not be operated outside of its allowable input voltage range.
The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

Load imbalance (reactive load) for test condition C (EUT output = 25 \% - 33 \%)										P
Test :										
Test conditions			$\begin{gathered} \text { Frequency: } 50+/-0,1 \mathrm{~Hz} \\ U_{N}=230+/-3 \mathrm{Vac} \\ \text { Distortion factor of chokes }<2 \% \\ \text { Quality }=1 \end{gathered}$							
Disconnection limit			2s (IEC 62116)							
No	$\begin{aligned} & \text { Peut }{ }^{1)} \\ & \text { [\% of EUT } \\ & \text { rating] } \end{aligned}$	Reactive load [\% of QL in 6,1,d) ${ }^{1)}$	$\mathrm{PAC}^{2)}$ [\% of nominal]	$\begin{gathered} \mathrm{QAC}^{3)} \\ {[\% \text { of }} \\ \text { nominal] } \end{gathered}$	$\begin{gathered} \mathrm{IAC}^{4)} \\ {[\mathrm{A}]} \end{gathered}$	Peut [kW per phase]	VDC [V]	Qf	Run on Time [ms]	Remarks 5)
1	33	33	0	-5	0,022	990	157	0,975	215	IB
2	33	33	0	-4	0,021	990	157	0,980	226	IB
3	33	33	0	-3	0,020	990	157	0,985	234	IB
4	33	33	0	-2	0,020	990	157	0,990	249	IB
5	33	33	0	-1	0,020	990	157	0,995	277	IB
6	33	33	0	0	0,020	990	157	1,000	308	BL
7	33	33	0	+1	0,022	990	157	1,005	441	IB
8	33	33	0	+2	0,024	990	157	1,010	396	IB
9	33	33	0	+3	0,025	990	157	1,015	378	IB
10	33	33	0	+4	0,028	990	157	1,020	366	IB
11	33	33	0	+5	0,031	990	157	1,025	357	IB
Parameter at 0\% per phase			$\mathrm{L}=103,94 \mathrm{mH}$			$\mathrm{R}=32,65 \Omega$		$\mathrm{C}=97,48 \mu \mathrm{~F}$		

Note:

RLC is adjusted to min. $+/-1 \%$ of the inverter rated output power

1) PEUT: EUT output power.
${ }^{\text {2) }}$ Pac: Real power flow at S 1 in Figure 1, Positive means power from EUT to utility, Nominal is the 0% test condition value.
 test condition value.
2) Fundamental of l_{AC} when RLC is adjusted.
${ }^{5)}$ BL: Balance condition, IB: Imbalance condition.
Condition B:
EUT output power $\mathrm{P}_{\text {EUT }}=25 \%-33 \%{ }^{6}$) of maximum
EUT input voltage ${ }^{7 \text {) }}=<20 \%$ of rated input voltage range
${ }^{6)}$ Or minimum allowable EUT output level if greater than 33%.
${ }^{7}$) Based on EUT rated input operating range, For example, If range is between X volts and Y volts, 20% of range $=\mathrm{X}+0,2 \times(\mathrm{Y}-\mathrm{X})$, Y shall not exceed $0,8 \times \mathrm{EUT}$ maximum system voltage (i, e, , maximum allowable array open circuit voltage), In any case, the EUT should not be operated outside of its allowable input voltage range.
The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

EN 50549-1:2019: Connection and starting to generate electrical power

Clause	Test requirement	Test procedure according standard	Result
4.10 .2	Automatic reconnection after trippin	EN 50438, Annex D.3.6	P
4.10 .3	Starting to generate electrical power	EN 50438, Annex D.3.6	P

	Frequency conditions	
d) Start up for frequency range	$<49,50 \mathrm{~Hz}$ for twice of setting observation time	$>50,10 \mathrm{~Hz}$ for twice of setting observation time
Connection:	No connection	No connection
Limit	No connection allowed	
e) In frequency range at start-up	$\geq 49,50 \mathrm{~Hz}$ within twice of setting observation time	$\leq 50,10 \mathrm{~Hz}$ within twice of setting observation time
Reconnection time [s]	68 s	67 s
Limit:	Connected after setting delay time($\geq 60 \mathrm{~s}$)	
Gradient:	The maximum occurring active power gradient after connection respectively start generating electrical power is less than the configured maximum active power per minute Max gradient: disable. For recorded gradient see diagram below.	
f) In frequency range after frequency failture	$\geq 49,50 \mathrm{~Hz}$ for twice of setting observation time	$\leq 50,20 \mathrm{~Hz}$ for twice of setting observation time
Reconnection time [s]	68 s	68 s
Limit:	Reconnection after setting observation time (≥ 60 s)	
Gradient:	For adjustable micro generators the maximum occurring active power gradient after connection respectively start generating electrical power is less than the configured maximum active power per minute Max gradient: 10\%PEmax/min. For non or partly adjustable generators the connection after trip of the interface protection is delayed by a randomised value between 1 min and 10 min . For recorded gradient see diagram below.	
Test: Test condition b) and c): voltage withi Test condition e): frequency within the Test condition f): frequency within the In order to avoid continuous starting disengaging value of frequency and The test had been performed on the ASW1500S-S, ASW2000S-S since it	he limits of 85% to $110 \% U_{n}$. mits of $49,50 \mathrm{~Hz}$ to $50,1 \mathrm{~Hz}$. mits of $49,50 \mathrm{~Hz}$ to $50,2 \mathrm{~Hz}$. disengaging operations of the inte age functions shall be above 2% del ASW3000S-S, the test results identical in hardware and software.	ace protection relay, the viating from the operate value. valid for the ASW1000S-S,
Assessment criterion: a) the micro generator connects respe permitted range of voltage and freque b) for adjustable micro generators the respectively start generating electrical power per minute and c) for non or partly adjustable generat delayed by a randomised value betwe	ively starts generating electrical po y and aximum occurring active power gr ower is less than the configured maxi the connection after trip of the int 1 min and 10 min .	er only in the ient after connection imum active face protection is

Graph of the gradual power supply : Test b) for $\geq 85 \% U_{n}$

Graph of the gradual power supply : Test b) for $\leq 110 \% U_{n}$

Graph of the gradual power supply : Test c) for $\geq 85 \% U_{n}$

Graph of the gradual power supply : Test c) for $\leq 110 \% U_{n}$

Graph of the gradual power supply : Test e) for $\leq 50,10 \mathrm{~Hz}$

Graph of the gradual power supply : Test f) for $\geq 49,50 \mathrm{~Hz}$

Graph of the gradual power supply : Test f) for $\leq 50,20 \mathrm{~Hz}$

EN 50549-1:2019: Ceasing and reduction of active power on set point

Clause	Test requirement	Test procedure according standard	Result
4.11 .1	Ceasing active power	CEI 0-21:2019-04, Annex A.4.3.3.2	P
4.11 .2	Reduction of active power on a set point	FGW TG3, Revision 25, clause 4.1.2	P

| 4.11.1 Ceasing active power | P |
| :--- | :--- | :---: |
| Operating time of the monitoring device | |
| Test: | Remote tripping signal for the external disconnection |
| Limit [s]: | 5 s |
| Reaction time of the tripping
 value [s]: | $0,039 \mathrm{~s}$ |

Note:

The test method refer to Annex A,4,3,2 of CEI 0-21:2019-04,
Generating plants shall be equipped with a logic interface (input port) in order to cease active power output within five seconds following an instruction being received at the input port, If required by the DSO, this includes remote operation.
The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

4.11.2 Reduction of active power on set point				P
Test result:				
Setpoint power bin [\%PEmax]	$\mathrm{P}_{\text {set }}[\mathrm{kW}$]	$\mathrm{P}_{60}[\mathrm{~kW}]$	Deviation [\%P $\mathrm{Emax}^{\text {m }}$]	
100\%	3,000	3,004	0,144	
90\%	2,700	2,714	0,451	
80\%	2,400	2,406	0,190	
70\%	2,100	2,101	0,039	
60\%	1,800	1,799	-0,045	
50\%	1,500	1,495	-0,167	
40\%	1,200	1,204	0,132	
30\%	0,900	0,898	-0,075	
20\%	0,600	0,591	-0,294	
10\%	0,300	0,284	-0,519	
5\%	0,150	0,140	-0,328	
	Setpoint power bin [\%PEmax]		Deviation[\%P Emax]	
Max. deviation	10\%		-0,519	
Limit $\Delta \mathrm{P}_{\text {E60 }} / \mathrm{P}_{\text {Setpoint }}$:	+ 5% of $\mathrm{P}_{\text {Emax }}$			

Test:

The setpoint signal must be reduced from 100% to 0\% Pemax:
a) for adjustable PGUs in increments of 10% Pemax, 1 minute must elapse after every change to the setpoint setting so that the PGU can settle at the new setpoint, Then the active power of the PGU must be measured as a 1 -min mean value.
b) For all other PGUs, in line with their adjustable steps, 5 minutes must elapse after the setpoint setting is changed so that the PGU can settle at the new setpoint, Then the active power of the PGU must be measured as a 1 -min mean value.

Assessment criterion:

a) for adjustable PGUs:

- no network disconnection
- the active power value does not exceed the setpoint by more than $5 \% \mathrm{P}_{\mathrm{Emax}}$
- the setting time determined this way is $\leq 1 \mathrm{~min}$
b) For all other PGUs:
- the active power value does not exceed the setpoint by more than $5 \% \mathrm{PEmax}$ or
- the setpoint is fallen below within 5 minutes or the PGU has switched off

Note:

The setting time is $\leq 1 \mathrm{~min}$. See below "Graph of the setting accuracy".
The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.

EN 50549-1:2019

Clause	Test requirement	Test procedure according standard	Result
4.13	Requirements regarding single fault tolerance of interface protection system and interface switch	VDE V 0124-100:2019-02 (Draft), clause 5.5 .2	\mathbf{P}

| 4.13 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| Requirements regarding single fault tolerance of interface protection |
| system and interface switch |

Component No.	Fault	Test condition		Test time	Fuse No,	Fault condition		Result
		AC	DC			AC	DC	
DC isolation device function detector (R615)	0-C before start up	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	30 min	-	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	The PCE didn't start. Error 38 ISO check fail. No harzard happened.
Residual current detector (R275)	O-C	$\begin{aligned} & 230 \mathrm{~V} \\ & 13,1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 380 \mathrm{~V} \\ & 7,9 \mathrm{~A} \end{aligned}$	30 min	-	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	The PCE shut down.The PCE didn't start. Error 9 GFCI check fail. No harzard happened.
Residual current detector (R226)	O-C	$\begin{aligned} & 230 \mathrm{~V} \\ & 13,1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 380 \mathrm{~V} \\ & 7,9 \mathrm{~A} \end{aligned}$	30 min	-	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	The PCE shut down.The PCE didn't start. Error 9 GFCI check fail. No harzard happened.
Residual current detector (R227)	O-C	$\begin{aligned} & 230 \mathrm{~V} \\ & 13,1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 380 \mathrm{~V} \\ & 7,9 \mathrm{~A} \end{aligned}$	30 min	-	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	The PCE shut down.The PCE didn't start. Error 9 GFCI check fail. No harzard happened.
Residual current detector (R228)	O-C	$\begin{aligned} & 230 \mathrm{~V} \\ & 13,1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 380 \mathrm{~V} \\ & 7,9 \mathrm{~A} \end{aligned}$	30 min	-	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	The PCE shut down.The PCE didn't start. Error 9 GFCl check fail. No harzard happened.
Relay 201	S-C before start up	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	30 min	-	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	The PCE didn't start. Error 3 Relay check fail. No harzard happened.
Relay 202	s-C before start up	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	30 min	-	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	The PCE didn't start. Error 3 Relay check fail. No harzard happened.
Relay 203	s-c before start up	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	30 min	-	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	The PCE didn't start. Error 3 Relay check fail. No harzard happened.
Relay 204	s-c before start up	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	30 min	-	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	The PCE didn't start. Error 3 Relay check fail. No harzard happened.
Relay function detector (Q405 D-S)	S-C	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	30 min	-	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	The PCE didn't start. Error 3 Relay check fail. No harzard happened.
Inverter drive (R301)	O-C	$\begin{aligned} & 230 \mathrm{~V} \\ & 13,1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 380 \mathrm{~V} \\ & 7,9 \mathrm{~A} \end{aligned}$	30 min	-	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	The PCE shut down.The PCE didn't start.Error 4 DCI protestion. No harzard happened.
Inverter drive (R309)	O-C	$\begin{aligned} & 230 \mathrm{~V} \\ & 13,1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 380 \mathrm{~V} \\ & 7,9 \mathrm{~A} \end{aligned}$	30 min	-	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	The PCE shut down.The PCE didn't start.Error 4 DCI protestion. No harzard happened.

Component No.	Fault	Test condition		Test time	Fuse No,	Fault condition		Result
		AC	DC			AC	DC	
Inverter drive (R313)	O-C	$\begin{aligned} & 230 \mathrm{~V} \\ & 13,1 \mathrm{~A} \end{aligned}$	$\begin{gathered} 380 \mathrm{~V} \\ 7,9 \mathrm{~A} \end{gathered}$	30 min	-	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	The PCE shut down.The PCE didn't start.Error 4 DCI protestion. No harzard happened.
Main CPU oscillator (R749)	S-C	$\begin{aligned} & 230 \mathrm{~V} \\ & 13,1 \mathrm{~A} \end{aligned}$	$\begin{gathered} 380 \mathrm{~V} \\ 7,9 \mathrm{~A} \end{gathered}$	30 min	-	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	The PCE shut down.The PCE didn't start.No error code. No harzard happened.
MainCPU and slave CPU communication (R792)	O-C	$\begin{aligned} & 230 \mathrm{~V} \\ & 13,1 \mathrm{~A} \end{aligned}$	$\begin{gathered} 380 \mathrm{~V} \\ 7,9 \mathrm{~A} \end{gathered}$	30 min	-	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	The PCE shut down.The PCE didn't start.No error code. No harzard happened.
MainCPU and slave CPU communication (R765)	O-C	$\begin{aligned} & 230 \mathrm{~V} \\ & 13,1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 380 \mathrm{~V} \\ & 7,9 \mathrm{~A} \end{aligned}$	30 min	-	$\begin{aligned} & 230 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 487 \mathrm{~V} \\ & 0,01 \mathrm{~A} \end{aligned}$	The PCE shut down.The PCE didn't start. No error code. No harzard happened.
The errors in the control circuit simulate that the safety is even under one error ensured,								
Addendum - Shutdown device								
Each active phase can be switched, (L and N)								Yes
If no galvanic separation between AC and DC (PV): Two relays in series on each active phase are necessary to fulfil the basic insulation or simple separation based on the PV working voltage,								Two relays in series on each active phase
Note: The test had been performed on the model ASW3000S-S, the test results are valid for the ASW1000S-S, ASW1500S-S, ASW2000S-S since it is identical in hardware and software.								

Annex No. 3

Pictures of the unit

Enclosure Bottom view

Enclosure top view

Enclosure side view-1

Enclosure side view-2

Internal view 1

Internal view 2

Main board -component side view

Main board-solder side view

Annex No. 4

Test Equipment list

Date(s) of performance test: 2019-12-10 to 2020-01-08

Equipment	Internal No,	Manufacturer	Type	Serial No,	Calibration is valid to
Power analyzer	SCGJ296	YOKOGAWA	WT1800	//	Feb. 14, 2020
Oscilloscope	SCGJ417	YOKOGAWA	DLM2024	//	Feb. 14, 2020
	SCGT208	Agilent	DSO7014B	//	Feb. 14, 2020
AC Source	656038001333	CHROMA	6560	//	Monitored by Power analyzer
DC Simulation Power supply	62150EF01095	CHROMA	$62150 \mathrm{H}-1000 \mathrm{~S}$	//	
	62150EF01095	CHROMA	62150H-600S	//	
RLC load	93V002581	Qunling	ACTL-3803H	//	
AC/DC Current probel	ZSCGJ0161	Tektronix	A622	//	Feb. 14, 2020
Differential probel	P5200A	Tektronix	P5200A	//	Feb. 14, 2020
Multi-meter	SCGJ334	Fluke	F287	//	Feb. 14, 2020

